The present study is focused on the littoral zone between Rome and Civitavecchia, where the spatio-temporal dynamics of the land cover has been analysed during the last thirty years, by means of Remote Sensing and GIS procedures. In a few decades, the coastal municipalities within the study area have considerably increased their inhabitants. Population and urban expansion have grown in parallel, at the expense of agricultural and natural areas, especially in the narrow coastal strip between the sea and the hills. Landsat satellite data from 1990 to 2019 have been processed and classified in order to describe and map the Land-Cover change (LCc). Maps have been suitable integrated with population data and other geospatial layers (transportation network). The results obtained allowed to understand the natural and rural land transformations, especially those related to the urban growth and expansion that are related to the proximity of Rome City.
This study analyzes, through remote sensing techniques and innovative clouding services, the recent land use dynamics in the North-Roman littoral zone, an area where the latest development has witnessed an important reconversion of purely rural areas to new residential and commercial services. The survey area includes five municipalities and encompasses important infrastructure, such as the “Leonardo Da Vinci” Airport and the harbor of Civitavecchia. The proximity to the metropolis, supported by an efficient network of connections, has modified the urban and peri-urban structure of these areas, which were formerly exclusively agricultural. Hereby, urban expansion has been quantified by classifying Landsat satellite images using the cloud computing platform “Google Earth Engine” (GEE). Landsat multispectral images from 1985 up to 2020 were used for the diachronic analysis, with a five-yearly interval. In order to achieve a high accuracy of the final result, work was carried out along the temporal dimension of the images, selecting specific time windows for the creation of datasets, which were adjusted by the information related to the NDVI index variation through time. This implementation showed interesting improvements in the model performance for each year, suggesting the importance of the NDVI standard deviation parameter. The results showed an increase in the overall accuracy, being from 90 to 97%, with improvements in distinguishing urban surfaces from impervious surfaces. The final results highlighted a significant increase in the study area of the “Urban” and “Woodland” classes over the 35-year time span that was considered, being 67.4 km2 and 70.4 km2, respectively. The accurate obtained results have allowed us to quantify and understand the landscape transformations in the area of interest, with particular reference to the dynamics of urban development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.