Zika virus (ZIKV) is a flavivirus with a marked effect on fetal nervous system development. ZIKV treatment has recently been found to also have a benefit against glioblastoma, a highly aggressive brain tumor with a poor prognosis. The reported data do not completely explain the mechanism beyond this effect. Nevertheless, in the majority of the cases no adverse effect has been found in healthy adult humans. In this study, we characterized the ZIKV infection mechanism on glioblastoma stem cells, which are considered responsible for the tumor progression and resistance to conventional therapies. Moreover, we explain why the action of this virus is directed to the stem cells in the nervous system counterpart. Our results confirm the effectiveness of ZIKV treatment against glioblastoma, indicating novel molecular targets that can be introduced for more powerful therapies.
One of the goals of personalized medicine is to understand and treat diseases with greater precision through the molecular profile of the patient. This profiling is becoming a powerful tool for the discovery of novel biomarkers that can guide physicians in assessing, in advance, the disease stage, and monitoring disease progression. Circulating miRNAs and exosomal miRNAs, a group of small non-coding RNAs, are considered the gold standard diagnostic biomarkers for human diseases. We have previously demonstrated that osteosarcoma-derived exosomes are able to influence crucial mechanisms inside tumor niches, inducing osteoclast differentiation, and sustaining bone resorption activity. Here we discovered, through Next-Generation Sequencing (NGS), eight novel microRNAs in three different osteosarcoma cell lines, and assessed the selective packaging into the exosomes released. We then investigated, as proof-of-principle, the presence of the novel microRNAs in osteosarcoma patient samples, and found that 5 of the 8 novel microRNAs were more present in circulating exosomes of osteosarcoma patients compared with the controls. These results raise a question: Could the 8 novel microRNAs play a role for osteosarcoma pathogenesis? Although still premature, the results are encouraging, and further studies with a validation in a larger cohort are needed.
The use of cell secreted factors in clinical settings could be an alternative to conventional cell therapy, with the advantage of limiting concerns generally associated with traditional cell transplantation, such as tumorigenicity, immunoreactivity, and carrying of infections. Based on our published data, we predict a potential role for extracellular vesicles (EVs) in contributing to the proangiogenic activity of human fetal dermal cell secretome. Depletion of nanosized EVs from secretome significantly impaired its ability to induce formation of mesh-like structures in vitro. The isolated EVs were characterized for size and concentration by nanoparticle tracking analysis, and for protein markers (Rab5+, Alix+, CD63+, and calnexin-). The microRNA profile of EVs revealed 87 microRNAs significantly upregulated (≥15-fold increase) in fetal compared to adult dermal cell-derived EVs. Interestingly, these upregulated microRNAs included microRNAs with a validated role in angiogenesis according to literature. Moreover, the DIANA-TarBase v7.0 analysis confirmed enrichment in the KEGG signaling pathways associated with angiogenesis and wound healing, with the identification of putative target genes including thrombospondin 1. To validate the in silico data, EVs were also characterized for total protein contents. When tested in in vitro angiogenesis, fetal dermal cell-derived EVs were more effective than their adult counterpart in inducing formation of complete mesh-like structures. Furthermore, treatment of fibroblasts with fetal dermal-derived EVs determined a 4-fold increase of thrombospondin 1 protein amounts compared with the untreated fibroblasts. Finally, visualization of CSFE-labeled EVs in the cytosol of target cells suggested a successful uptake of these particles at 4-8 hours of incubation. We conclude that EVs are important contributors of the proangiogenic effect of fetal dermal cell secretome. Hence, EVs could also serve as vehicle for a successful delivery of microRNAs or other molecules of therapeutic interest to target cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.