The present work was undertaken to evaluate the influence of the wooden dairy plant equipment on the microbiological characteristics of curd to be transformed into Caciocavallo Palermitano cheese. Traditional raw milk productions were performed concomitantly with standard cheese making trials carried out in stainless steel vat inoculated with a commercial starter. Milk from two different farms (A and B) was separately processed. The wooden vat was found to be a reservoir of lactic acid bacteria (LAB), while unwanted (spoilage and/or pathogenic) microorganisms were not hosted or were present at very low levels. All microbial groups were numerically different in bulk milks, showing higher levels for the farm B. LAB, especially thermophilic cocci, dominated the whole cheese making process of all productions. Undesired microorganisms decreased in number or disappeared during transformation, particularly after curd stretching. LAB were isolated from the wooden vat surface and from all dairy samples, subjected to phenotypic and genetic characterization and identification. Streptococcus thermophilus was the species found at the highest concentration in all samples analyzed and it also dominated the microbial community of the wooden vat. Fourteen other LAB species belonging to six genera (Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Weissella) were also detected. All S. thermophilus isolates were genetically differentiated and a consortium of four strains persisted during the whole traditional production process. As confirmed by pH and the total acidity after the acidification step, indigenous S. thermophilus strains acted as a mixed starter culture.
a b s t r a c tIn this study, the composition of the cultivable microbial populations of 38 nectar honey and honeydew honey samples of different botanical and geographical origin were assessed. After growth in specific media, various colonies with different appearance were isolated and purified before phenotypic (morphological, physiological and biochemical traits) and genotypic [randomly amplified polymorphic DNA (RAPD), repetitive DNA elements-PCR (rep-PCR) and restriction fragment length polymorphism (RFLP)] differentiation. The identification was carried out by 16S rRNA gene sequencing for bacteria and, in addition to RFLP, by sequencing the D1/D2 region of the 26S rRNA gene for yeasts and the 5.8S-ITS rRNA region for filamentous fungi. The results showed the presence of 13 species of bacteria, 5 of yeasts and 17 of filamentous fungi; the species most frequently isolated were Bacillus amyloliquefaciens, Zygosaccharomyces mellis and Aspergillus niger for the three microbial groups, respectively. The highest microbial diversity was found in multifloral honeys. No correlation among the microbial species and the botanical/geographical origin was found, but some strains were highly adapted to these matrices since they were found in several samples of different origin.
a b s t r a c tLactic acid bacteria (LAB) were analysed from wheat flours used in traditional bread making throughout Sicily (southern Italy). Plate counts, carried out in three different media commonly used to detect food and sourdough LAB, revealed a maximal LAB concentration of approximately 4.75 Log CFU g
À1. Colonies representing various morphological appearances were isolated and differentiated based on phenotypic characteristics and genetic analysis by randomly amplified polymorphic DNA (RAPD)-PCR. Fifty unique strains were identified. Analysis by 16S rRNA gene sequencing grouped the strains into 11 LAB species, which belonged to six genera: Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus and Weissella. Weissella cibaria, Lactobacillus plantarum, Leuconostoc pseudomesenteroides and Leuconostoc citreum were the most prevalent species. The strains were not geographically related. Denaturing gradient gel electrophoresis (DGGE) analysis of total DNA of flour was used to provide a more complete understanding of the LAB population; it confirmed the presence of species identified with the culturedependent approach, but did not reveal the presence of any additional LAB species. Finally, the technological characteristics (acidifying capacity, antimicrobial production, proteolytic activity, organic acid, and volatile organic compound generation) of the 50 LAB strains were investigated. Eleven strains were selected for future in situ applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.