Structural alterations of the promoter region of the BCL-6 proto-oncogene represent the most frequent genetic alteration associated with non-Hodgkin lymphoma, a malignancy often deriving from germinal-centre B cells. The BCL-6 gene encodes a zinc-finger transcriptional repressor normally expressed in both B cells and CD4+ T cells within germinal centres, but its precise function is unknown. We show that mice deficient in BCL-6 displayed normal B-cell, T-cell and lymphoid-organ development but have a selective defect in T-cell-dependent antibody responses. This defect included a complete lack of affinity maturation and was due to the inability of follicular B cells to proliferate and form germinal centres. In addition, BCL-6-deficient mice developed an inflammatory response in multiple organs characterized by infiltrations of eosinophils and IgE-bearing B lymphocytes typical of a Th2-mediated hyperimmune response. Thus, BCL-6 functions as a transcriptional switch that controls germinal centre formation and may also modulate specific T-cell-mediated responses. Altered expression of BCL-6 in lymphoma represents a deregulation of the pathway normally leading to B cell proliferation and germinal centre formation.
The promyelocytic leukaemia zinc finger (Plzf) protein (encoded by the gene Zfp145) belongs to the POZ/zinc-finger family of transcription factors. Here we generate Zfp145-/- mice and show that Plzf is essential for patterning of the limb and axial skeleton. Plzf inactivation results in patterning defects affecting all skeletal structures of the limb, including homeotic transformations of anterior skeletal elements into posterior structures. We demonstrate that Plzf acts as a growth-inhibitory and pro-apoptotic factor in the limb bud. The expression of members of the abdominal b (Abdb) Hox gene complex, as well as genes encoding bone morphogenetic proteins (Bmps), is altered in the developing limb of Zfp145-/- mice. Plzf regulates the expression of these genes in the absence of aberrant polarizing activity and independently of known patterning genes. Zfp145-/- mice also exhibit anterior-directed homeotic transformation throughout the axial skeleton with associated alterations in Hox gene expression. Plzf is therefore a mediator of anterior-to-posterior (AP) patterning in both the axial and appendicular skeleton and acts as a regulator of Hox gene expression.
BTB/POZ-domain C 2 H 2 zinc(Zn)-®nger proteins are encoded by a subfamily of genes related to the Drosophila gap gene kruÈppel. To date, two such proteins, PLZF and LAZ-3/BCL-6, have been implicated in oncogenesis. We have now identi®ed a new member of this gene subfamily which encodes a 62 kDa Zn-®nger protein, termed LRF, with a BTB/POZ domain highly similar to that of PLZF. Both human and mouse LRF genes, which localized to syntenic chromosomal regions (19p13.3 and 10B5.3, respectively), were widely expressed in adult tissues and cell lines. At approximately 9.5 ± 10.0 days of embryonic development, the mouse LRF gene was expressed in the limb buds, pharyngeal arches, tail bud, placenta and neural tube. The LRF protein associated in vivo with LAZ-3/BCL-6, but not with PLZF to which it was more related. Although the LRF, or LAZ-3/BCL-6, BTB/POZ domain could readily homodimerize, no heterodimerization was detected in vivo between the LRF and LAZ-3/BCL-6 BTB/POZ domains and interaction between full length LRF and LAZ-3/BCL-6 required the presence of both the BTB/POZ domain and Zn-®ngers in each partner protein. As expected from the above results, LRF and LAZ-3/BCL-6 also colocalized with each other in the nucleus. Taken together, our ®ndings suggest that BTB/ POZ-domain Zn-®nger proteins may function as homo and heterodimeric complexes whose formation, and hence the resultant eect on transcription of their downstream target genes, is determined by the levels and expression domains of a given partner protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.