Peroxisomes are single membrane bound compartments. They are thought to be present in almost all eukaryotic cells, although the bulk of our knowledge about peroxisomes has been generated from only a handful of model organisms. Peroxisomal matrix proteins are synthesized cytosolically and posttranslationally imported into the peroxisomal matrix. The import is generally thought to be mediated by two different targeting signals. These are respectively recognized by the two import receptor proteins Pex5 and Pex7, which facilitate transport across the peroxisomal membrane. Here, we show the first in vivo localization studies of peroxisomes in a representative organism of the ecologically relevant group of diatoms using fluorescence and transmission electron microscopy. By expression of various homologous and heterologous fusion proteins we demonstrate that targeting of Phaeodactylum tricornutum peroxisomal matrix proteins is mediated only by PTS1 targeting signals, also for proteins that are in other systems imported via a PTS2 mode of action. Additional in silico analyses suggest this surprising finding may also apply to further diatoms. Our data suggest that loss of the PTS2 peroxisomal import signal is not reserved to Caenorhabditis elegans as a single exception, but has also occurred in evolutionary divergent organisms. Obviously, targeting switching from PTS2 to PTS1 across different major eukaryotic groups might have occurred for different reasons. Thus, our findings question the widespread assumption that import of peroxisomal matrix proteins is generally mediated by two different targeting signals. Our results implicate that there apparently must have been an event causing the loss of one targeting signal even in the group of diatoms. Different possibilities are discussed that indicate multiple reasons for the detected targeting switching from PTS2 to PTS1.
SUMMARYIn both mammalian and Drosophila spermatids, the completely histone-based chromatin structure is reorganized to a largely protamine-based structure. During this histone-to-protamine switch, transition proteins are expressed, for example TNP1 and TNP2 in mammals and Tpl94D in Drosophila. Recently, we demonstrated that in Drosophila spermatids, H3K79 methylation accompanies histone H4 hyperacetylation during chromatin reorganization. Preceding the histone-to-protamine transition, the H3K79 methyltransferase Grappa is expressed, and the predominant isoform bears a C-terminal extension. Here, we show that isoforms of the Grappa-equivalent protein in humans, rats and mice, that is DOT1L, have a C-terminal extension. In mice, the transcript of this isoform was enriched in the post-meiotic stages of spermatogenesis. In human and mice spermatids, di-and tri-methylated H3K79 temporally overlapped with hyperacetylated H4 and thus accompanied chromatin reorganization. In rat spermatids, trimethylated H3K79 directly preceded transition protein loading on chromatin. We analysed the impact of bacterial infections on spermatid chromatin using a uropathogenic Escherichia coli-elicited epididymo-orchitis rat model and showed that these infections caused aberrant spermatid chromatin. Bacterial infections led to premature emergence of trimethylated H3K79 and hyperacetylated H4. Trimethylated H3K79 and hyperacetylated H4 simultaneously occurred with transition protein TNP1, which was never observed in spermatids of mock-infected rats. Upon bacterial infection, only histone-based spermatid chromatin showed abnormalities, whereas protaminecompacted chromatin seemed to be unaffected. Our results indicated that H3K79 methylation is a histone modification conserved in Drosophila, mouse, rat and human spermatids and may be a prerequisite for proper chromatin reorganization.
Much of spermatid differentiation takes place in the absence of active transcription, but in the early phase, large amounts of mRNA are synthesized, translationally repressed, and stored. Most nucleosomal histones are then degraded, and chromatin is repackaged by protamines. For both transcription and the histone-to-protamine transition in differentiating spermatids, chromatin must be opened. This raises the question of whether two different processes exist. It is conceivable that for initiation of the histone-to-protamine transition, the already accessible, actively transcribed chromatin regions are utilized or vice versa. We analyzed the enrichment of different canonical TATA-boxbinding, protein-associated factors and their variants in murine spermatids, diverse bromodomain-containing proteins, and components of the Polycomb repressive complexes PRC1 and PRC2 using quantitative PCR. We compared the enrichment of corresponding proteins in human and murine spermatids and analyzed the time frame of postmeiotic transcription and expression of histones, transition proteins, and protamines in human and murine spermatids using immunohistology. We correlated the expression of different transcription factors and bromodomain-containing proteins and the pattern of acetylated histones to active transcription and to the histone-to-protamine transition in both human and murine spermatids. Our findings suggest that differentiating spermatids use both common and specific features to open chromatin first for transcription and subsequently for histone-to-protamine transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.