BackgroundLynch syndrome (LS) is an inherited autosomal dominant disorder characterised by an increased risk of colorectal cancer (CRC) and other cancers, and caused by mutations in the deoxyribonucleic acid (DNA) mismatch repair genes.ObjectiveTo evaluate the accuracy and cost-effectiveness of strategies to identify LS in newly diagnosed early-onset CRC patients (aged < 50 years). Cascade testing of relatives is employed in all strategies for individuals in whom LS is identified.Data sources and methodsSystematic reviews were conducted of the test accuracy of microsatellite instability (MSI) testing or immunohistochemistry (IHC) in individuals with CRC at risk of LS, and of economic evidence relating to diagnostic strategies for LS. Reviews were carried out in April 2012 (test accuracy); and in February 2012, repeated in February 2013 (economic evaluations). Databases searched included MEDLINE (1946 to April week 3, 2012), EMBASE (1980 to week 17, 2012) and Web of Science (inception to 30 April 2012), and risk of bias for test accuracy was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) quality appraisal tool. A de novo economic model of diagnostic strategies for LS was developed.ResultsInconsistencies in study designs precluded pooling of diagnostic test accuracy results from a previous systematic review and nine subsequent primary studies. These were of mixed quality, with significant methodological concerns identified for most. IHC and MSI can both play a part in diagnosing LS but neither is gold standard. No UK studies evaluated the cost-effectiveness of diagnosing and managing LS, although studies from other countries generally found some strategies to be cost-effective compared with no testing.The de novo model demonstrated that all strategies were cost-effective compared with no testing at a threshold of £20,000 per quality-adjusted life-year (QALY), with the most cost-effective strategy utilising MSI andBRAFtesting [incremental cost-effectiveness ratio (ICER) = £5491 per QALY]. The maximum health benefit to the population of interest would be obtained using universal germline testing, but this would not be a cost-effective use of NHS resources compared with the next best strategy. When the age limit was raised from 50 to 60 and 70 years, the ICERs compared with no testing increased but remained below £20,000 per QALY (except for universal germline testing with an age limit of 70 years). The total net health benefit increased with the age limit as more individuals with LS were identified. Uncertainty was evaluated through univariate sensitivity analyses, which suggested that the parameters substantially affecting cost-effectiveness: were the risk of CRC for individuals with LS; the average number of relatives identified per index patient; the effectiveness of colonoscopy in preventing metachronous CRC; the cost of colonoscopy; the duration of the psychological impact of genetic testing on health-related quality of life (HRQoL); and the impact of prophylactic hysterectomy and bilateral salpingo-oophorectomy on HRQoL (this had the potential to make all testing strategies more expensive and less effective than no testing).LimitationsThe absence of high-quality data for the impact of prophylactic gynaecological surgery and the psychological impact of genetic testing on HRQoL is an acknowledged limitation.ConclusionsResults suggest that reflex testing for LS in newly diagnosed CRC patients aged < 50 years is cost-effective. Such testing may also be cost-effective in newly diagnosed CRC patients aged < 60 or < 70 years. Results are subject to uncertainty due to a number of parameters, for some of which good estimates were not identified. We recommend future research to estimate the cost-effectiveness of testing for LS in individuals with newly diagnosed endometrial or ovarian cancer, and the inclusion of aspirin chemoprevention. Further research is required to accurately estimate the impact of interventions on HRQoL.Study registrationThis study is registered as PROSPERO CRD42012002436.FundingThe National Institute for Health Research Health Technology Assessment programme.
BackgroundInherited mutations in deoxyribonucleic acid (DNA) mismatch repair (MMR) genes lead to an increased risk of colorectal cancer (CRC), gynaecological cancers and other cancers, known as Lynch syndrome (LS). Risk-reducing interventions can be offered to individuals with known LS-causing mutations. The mutations can be identified by comprehensive testing of the MMR genes, but this would be prohibitively expensive in the general population. Tumour-based tests – microsatellite instability (MSI) and MMR immunohistochemistry (IHC) – are used in CRC patients to identify individuals at high risk of LS for genetic testing.MLH1(MutL homologue 1) promoter methylation andBRAFV600E testing can be conducted on tumour material to rule out certain sporadic cancers.ObjectivesTo investigate whether testing for LS in CRC patients using MSI or IHC (with or withoutMLH1promoter methylation testing andBRAFV600E testing) is clinically effective (in terms of identifying Lynch syndrome and improving outcomes for patients) and represents a cost-effective use of NHS resources.Review methodsSystematic reviews were conducted of the published literature on diagnostic test accuracy studies of MSI and/or IHC testing for LS, end-to-end studies of screening for LS in CRC patients and economic evaluations of screening for LS in CRC patients. A model-based economic evaluation was conducted to extrapolate long-term outcomes from the results of the diagnostic test accuracy review. The model was extended from a model previously developed by the authors.ResultsTen studies were identified that evaluated the diagnostic test accuracy of MSI and/or IHC testing for identifying LS in CRC patients. For MSI testing, sensitivity ranged from 66.7% to 100.0% and specificity ranged from 61.1% to 92.5%. For IHC, sensitivity ranged from 80.8% to 100.0% and specificity ranged from 80.5% to 91.9%. When tumours showing low levels of MSI were treated as a positive result, the sensitivity of MSI testing increased but specificity fell. No end-to-end studies of screening for LS in CRC patients were identified. Nine economic evaluations of screening for LS in CRC were identified. None of the included studies fully matched the decision problem and hence a new economic evaluation was required. The base-case results in the economic evaluation suggest that screening for LS in CRC patients using IHC,BRAFV600E andMLH1promoter methylation testing would be cost-effective at a threshold of £20,000 per quality-adjusted life-year (QALY). The incremental cost-effectiveness ratio for this strategy was £11,008 per QALY compared with no screening. Screening without tumour tests is not predicted to be cost-effective.LimitationsMost of the diagnostic test accuracy studies identified were rated as having a risk of bias or were conducted in unrepresentative samples. There was no direct evidence that screening improves long-term outcomes. No probabilistic sensitivity analysis was conducted.ConclusionsSystematic review evidence suggests that MSI- and IHC-based testing can be used to identify LS in CRC patients, although there was heterogeneity in the methods used in the studies identified and the results of the studies. There was no high-quality empirical evidence that screening improves long-term outcomes and so an evidence linkage approach using modelling was necessary. Key determinants of whether or not screening is cost-effective are the accuracy of tumour-based tests, CRC risk without surveillance, the number of relatives identified for cascade testing, colonoscopic surveillance effectiveness and the acceptance of genetic testing. Future work should investigate screening for more causes of hereditary CRC and screening for LS in endometrial cancer patients.Study registrationThis study is registered as PROSPERO CRD42016033879.FundingThe National Institute for Health Research Health Technology Assessment programme.
BackgroundLynch syndrome is an autosomal dominant cancer predisposition syndrome caused by mutations in the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2. Individuals with Lynch syndrome have an increased risk of colorectal cancer, endometrial cancer, ovarian and other cancers. Lynch syndrome remains underdiagnosed in the UK. Reflex testing for Lynch syndrome in early-onset colorectal cancer patients is proposed as a method to identify more families affected by Lynch syndrome and offer surveillance to reduce cancer risks, although cost-effectiveness is viewed as a barrier to implementation. The objective of this project was to estimate the cost–utility of strategies to identify Lynch syndrome in individuals with early-onset colorectal cancer in the NHS.MethodsA decision analytic model was developed which simulated diagnostic and long-term outcomes over a lifetime horizon for colorectal cancer patients with and without Lynch syndrome and for relatives of those patients. Nine diagnostic strategies were modelled which included microsatellite instability (MSI) testing, immunohistochemistry (IHC), BRAF mutation testing (methylation testing in a scenario analysis), diagnostic mutation testing and Amsterdam II criteria. Biennial colonoscopic surveillance was included for individuals diagnosed with Lynch syndrome and accepting surveillance. Prophylactic hysterectomy with bilateral salpingo-oophorectomy (H-BSO) was similarly included for women diagnosed with Lynch syndrome. Costs from NHS and Personal Social Services perspective and quality-adjusted life years (QALYs) were estimated and discounted at 3.5% per annum.ResultsAll strategies included for the identification of Lynch syndrome were cost-effective versus no testing. The strategy with the greatest net health benefit was MSI followed by BRAF followed by diagnostic genetic testing, costing £5,491 per QALY gained over no testing. The effect of prophylactic H-BSO on health-related quality of life (HRQoL) is uncertain and could outweigh the health benefits of testing, resulting in overall QALY loss.ConclusionsReflex testing for Lynch syndrome in early-onset colorectal cancer patients is predicted to be a cost-effective use of limited financial resources in England and Wales. Research is recommended into the cost-effectiveness of reflex testing for Lynch syndrome in other associated cancers and into the impact of prophylactic H-BSO on HRQoL.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-015-1254-5) contains supplementary material, which is available to authorized users.
BackgroundEnd-stage renal disease is a long-term irreversible decline in kidney function requiring renal replacement therapy: kidney transplantation, haemodialysis or peritoneal dialysis. The preferred option is kidney transplantation, followed by immunosuppressive therapy (induction and maintenance therapy) to reduce the risk of kidney rejection and prolong graft survival.ObjectivesTo review and update the evidence for the clinical effectiveness and cost-effectiveness of basiliximab (BAS) (Simulect®, Novartis Pharmaceuticals UK Ltd) and rabbit anti-human thymocyte immunoglobulin (rATG) (Thymoglobulin®, Sanofi) as induction therapy, and immediate-release tacrolimus (TAC) (Adoport®, Sandoz; Capexion®, Mylan; Modigraf®, Astellas Pharma; Perixis®, Accord Healthcare; Prograf®, Astellas Pharma; Tacni®, Teva; Vivadex®, Dexcel Pharma), prolonged-release tacrolimus (Advagraf®Astellas Pharma), belatacept (BEL) (Nulojix®, Bristol-Myers Squibb), mycophenolate mofetil (MMF) (Arzip®, Zentiva; CellCept®, Roche Products; Myfenax®, Teva), mycophenolate sodium (MPS) (Myfortic®, Novartis Pharmaceuticals UK Ltd), sirolimus (SRL) (Rapamune®, Pfizer) and everolimus (EVL) (Certican®, Novartis) as maintenance therapy in adult renal transplantation.MethodsClinical effectiveness searches were conducted until 18 November 2014 in MEDLINE (via Ovid), EMBASE (via Ovid), Cochrane Central Register of Controlled Trials (via Wiley Online Library) and Web of Science (via ISI), Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects and Health Technology Assessment (The Cochrane Library via Wiley Online Library) and Health Management Information Consortium (via Ovid). Cost-effectiveness searches were conducted until 18 November 2014 using a costs or economic literature search filter in MEDLINE (via Ovid), EMBASE (via Ovid), NHS Economic Evaluation Database (via Wiley Online Library), Web of Science (via ISI), Health Economic Evaluations Database (via Wiley Online Library) and the American Economic Association’s electronic bibliography (via EconLit, EBSCOhost). Included studies were selected according to predefined methods and criteria. A random-effects model was used to analyse clinical effectiveness data (odds ratios for binary data and mean differences for continuous data). Network meta-analyses were undertaken within a Bayesian framework. A new discrete time–state transition economic model (semi-Markov) was developed, with acute rejection, graft function (GRF) and new-onset diabetes mellitus used to extrapolate graft survival. Recipients were assumed to be in one of three health states: functioning graft, graft loss or death.ResultsEighty-nine randomised controlled trials (RCTs), of variable quality, were included. For induction therapy, no treatment appeared more effective than another in reducing graft loss or mortality. Compared with placebo/no induction, rATG and BAS appeared more effective in reducing biopsy-proven acute rejection (BPAR) and BAS appeared more effective at improving GRF. For maintenance therapy, no treatment was better for all outcomes and no treatment appeared most effective at reducing graft loss. BEL + MMF appeared more effective than TAC + MMF and SRL + MMF at reducing mortality. MMF + CSA (ciclosporin), TAC + MMF, SRL + TAC, TAC + AZA (azathioprine) and EVL + CSA appeared more effective than CSA + AZA and EVL + MPS at reducing BPAR. SRL + AZA, TAC + AZA, TAC + MMF and BEL + MMF appeared to improve GRF compared with CSA + AZA and MMF + CSA. In the base-case deterministic and probabilistic analyses, BAS, MMF and TAC were predicted to be cost-effective at £20,000 and £30,000 per quality-adjusted life-year (QALY). When comparing all regimens, only BAS + TAC + MMF was cost-effective at £20,000 and £30,000 per QALY.LimitationsFor included trials, there was substantial methodological heterogeneity, few trials reported follow-up beyond 1 year, and there were insufficient data to perform subgroup analysis. Treatment discontinuation and switching were not modelled.Future workHigh-quality, better-reported, longer-term RCTs are needed. Ideally, these would be sufficiently powered for subgroup analysis and include health-related quality of life as an outcome.ConclusionOnly a regimen of BAS induction followed by maintenance with TAC and MMF is likely to be cost-effective at £20,000–30,000 per QALY.Study registrationThis study is registered as PROSPERO CRD42014013189.FundingThe National Institute for Health Research Health Technology Assessment programme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.