Pseudomonas aeruginosa can establish life-long airways chronic infection in patients with cystic fibrosis (CF) with pathogenic variants distinguished from initially acquired strain. Here, we analysed chemical and biological activity of P. aeruginosa Pathogen-Associated Molecular Patterns (PAMPs) in clonal strains, including mucoid and non-mucoid phenotypes, isolated during a period of up to 7.5 years from a CF patient. Chemical structure by MS spectrometry defined lipopolysaccharide (LPS) lipid A and peptidoglycan (PGN) muropeptides with specific structural modifications temporally associated with CF lung infection. Gene sequence analysis revealed novel mutation in pagL, which supported lipid A changes. Both LPS and PGN had different potencies when activating host innate immunity via binding TLR4 and Nod1. Significantly higher NF-kB activation, IL-8 expression and production were detected in HEK293hTLR4/MD2-CD14 and HEK293hNod1 after stimulation with LPS and PGN respectively, purified from early P. aeruginosa strain as compared to late strains. Similar results were obtained in macrophages-like cells THP-1, epithelial cells of CF origin IB3-1 and their isogenic cells C38, corrected by insertion of cystic fibrosis transmembrane conductance regulator (CFTR). In murine model, altered LPS structure of P. aeruginosa late strains induces lower leukocyte recruitment in bronchoalveolar lavage and MIP-2, KC and IL-1β cytokine levels in lung homogenates when compared with early strain. Histopathological analysis of lung tissue sections confirmed differences between LPS from early and late P. aeruginosa. Finally, in this study for the first time we unveil how P. aeruginosa has evolved the capacity to evade immune system detection, thus promoting survival and establishing favourable conditions for chronic persistence. Our findings provide relevant information with respect to chronic infections in CF.
The opportunistic pathogen Pseudomonas aeruginosa is able to thrive in diverse ecological niches and to cause serious human infection. P. aeruginosa environmental strains are producing various virulence factors that are required for establishing acute infections in several host organisms; however, the P. aeruginosa phenotypic variants favour long-term persistence in the cystic fibrosis (CF) airways. Whether P. aeruginosa strains, which have adapted to the CF-niche, have lost their competitive fitness in the other environment remains to be investigated. In this paper, three P. aeruginosa clonal lineages, including early strains isolated at the onset of infection, and late strains, isolated after several years of chronic lung infection from patients with CF, were analysed in multi-host model systems of acute infection. P. aeruginosa early isolates caused lethality in the three non-mammalian hosts, namely Caenorhabditis elegans, Galleria mellonella, and Drosophila melanogaster, while late adapted clonal isolates were attenuated in acute virulence. When two different mouse genetic background strains, namely C57Bl/6NCrl and Balb/cAnNCrl, were used as acute infection models, early P. aeruginosa CF isolates were lethal, while late isolates exhibited reduced or abolished acute virulence. Severe histopathological lesions, including high leukocytes recruitment and bacterial load, were detected in the lungs of mice infected with P. aeruginosa CF early isolates, while late isolates were progressively cleared. In addition, systemic bacterial spread and invasion of epithelial cells, which were detected for P. aeruginosa CF early strains, were not observed with late strains. Our findings indicate that niche-specific selection in P. aeruginosa reduced its ability to cause acute infections across a broad range of hosts while maintaining the capacity for chronic infection in the CF host.
The Gram-negative bacteria Pseudomonas aeruginosa and Burkholderia cenocepacia are opportunistic human pathogens that are responsible for severe nosocomial infections in immunocompromised patients and those suffering from cystic fibrosis (CF). These two bacteria have been shown to form biofilms in the airways of CF patients that make such infections more difficult to treat. Only recently have scientists begun to appreciate the complicated interplay between microorganisms during polymicrobial infection of the CF airway and the implications they may have for disease prognosis and response to therapy.To gain insight into the possible role that interaction between strains of P. aeruginosa and B. cenocepacia may play during infection, we characterised co-inoculations of in vivo and in vitro infection models. Co-inoculations were examined in an in vitro biofilm model and in a murine model of chronic infection. Assessment of biofilm formation showed that B. cenocepacia positively influenced P. aeruginosa biofilm development by increasing biomass. Interestingly, co-infection experiments in the mouse model revealed that P. aeruginosa did not change its ability to establish chronic infection in the presence of B. cenocepacia but co-infection did appear to increase host inflammatory response.Taken together, these results indicate that the co-infection of P. aeruginosa and B. cenocepacia leads to increased biofilm formation and increased host inflammatory response in the mouse model of chronic infection. These observations suggest that alteration of bacterial behavior due to interspecies interactions may be important for disease progression and persistent infection.
The optimal treatment sequence for high risk (HR) myeloma has not been defined and many experts recommend various intensifications for this subpopulation, including quadruplets, consolidation, tandem CORRESPONDENCE E35
Repeated cycles of infections, caused mainly by Pseudomonas aeruginosa, combined with a robust host immune response and tissue injury, determine the course and outcome of cystic fibrosis (CF) lung disease. As the disease progresses, P. aeruginosa adapts to the host modifying dramatically its phenotype; however, it remains unclear whether and how bacterial adaptive variants and their persistence influence the pathogenesis and disease development. Using in vitro and murine models of infection, we showed that P. aeruginosa CF-adaptive variants shaped the innate immune response favoring their persistence. Next, we refined a murine model of chronic pneumonia extending P. aeruginosa infection up to three months. In this model, including CFTR-deficient mice, we unveil that the P. aeruginosa persistence lead to CF hallmarks of airway remodelling and fibrosis, including epithelial hyperplasia and structure degeneration, goblet cell metaplasia, collagen deposition, elastin degradation and several additional markers of tissue damage. This murine model of P. aeruginosa chronic infection, reproducing CF lung pathology, will be instrumental to identify novel molecular targets and test newly tailored molecules inhibiting chronic inflammation and tissue damage processes in pre-clinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.