Stars with accurate and precise effective temperature (Teff) measurements are needed to test stellar atmosphere models and calibrate empirical methods to determine Teff. There are few standard stars currently available to calibrate temperature indicators for dwarf stars. Gaia parallaxes now make it possible, in principle, to measure Teff for many dwarf stars in eclipsing binaries. We aim to develop a method that uses high-precision measurements of detached eclipsing binary stars, Gaia parallaxes and multi-wavelength photometry to obtain accurate and precise fundamental effective temperatures that can be used to establish a set of benchmark stars. We select the well-studied binary AI Phoenicis to test our method, since it has very precise absolute parameters and extensive archival photometry. The method uses the stellar radii and parallax for stars in eclipsing binaries. We use a Bayesian approach to obtain the integrated bolometric fluxes for the two stars from observed magnitudes, colours and flux ratios. The fundamental effective temperature of two stars in AI Phoenicis are 6199 ± 22 K for the F7 V component and 5094 ± 16 K for the K0 IV component. The zero-point error in the flux scale leads to a systematic error of only 0.2% (≈ 11 K) in Teff. We find that these results are robust against the details of the analysis, such as the choice of model spectra. Our method can be applied to eclipsing binary stars with radius, parallax and photometric measurements across a range of wavelengths. Stars with fundamental effective temperatures determined with this method can be used as benchmarks in future surveys.
The accuracy of theoretical mass, radius and effective temperature values for M-dwarf stars is an active topic of debate. Differences between observed and theoretical values have raised the possibility that current theoretical stellar structure and evolution models are inaccurate towards the low-mass end of the main sequence. To explore this issue we use the CHEOPS satellite to obtain high-precision light curves of eclipsing binaries with low mass stellar companions. We use these light curves combined with the spectroscopic orbit for the solar-type companion to measure the mass, radius and effective temperature of the M-dwarf star. Here we present the analysis of three eclipsing binaries. We use the pycheops data analysis software to fit the observed transit and eclipse events of each system. Two of our systems were also observed by the TESS satellite– we similarly analyse these light curves for comparison. We find consistent results between CHEOPS and TESS, presenting three stellar radii and two stellar effective temperature values of low-mass stellar objects. These initial results from our on-going observing programme with CHEOPS show that we can expect to have ∼24 new mass, radius and effective temperature measurements for very low mass stars within the next few years.
We present TOI-1259Ab, a 1.0RJup gas giant planet transiting a 0.71R⊙ K-dwarf on a 3.48 day orbit. The system also contains a bound white dwarf companion TOI-1259B with a projected distance of ∼1600 AU from the planet host. Transits are observed in nine TESS sectors and are 2.7 per cent deep – among the deepest known – making TOI-1259Ab a promising target for atmospheric characterization. Our follow-up radial velocity measurements indicate a variability of semiamplitude $K=71\, \rm m\, s^{-1}$, implying a planet mass of 0.44MJup. By fitting the spectral energy distribution of the white dwarf we derive a total age of $4.08^{+1.21}_{-0.53}$ Gyr for the system. The K dwarf’s light curve reveals rotational variability with a period of 28 days, which implies a gyrochronology age broadly consistent with the white dwarf’s total age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.