Four short‐finned pilot whales, Globicephala macrorhynchus, were tagged with digital acoustic recording tags (DTAGs) for a total of 30 h in the Bahamas during 2007. Spectrograms were made of all audible sounds, which were independently categorized by three observers. Of 4,098 calls, 1,737 (42%) were placed into 173 call types, which were defined as calls that occurred more than once. Of the 173 call types, 51 contained at least 10 calls (= 24), and were termed predominant call types (PCTs), which comprised 1,219 (70%) of categorized calls. PCTs tended to occur in sequences of the same call, which appeared to be produced by a single animal. However, matching interactions consisting of adjacent or overlapping calls of the same type were also observed, and some call types were recorded on more than one tag, suggesting that at least some calls are shared by members of a group or subgroup. These results emphasize the importance of categorizing calls before attempting to draw conclusions about call usage and possible effects of noise on vocal behavior.
Knowledge of abundance, trends and distribution of cetacean populations is needed to inform marine conservation efforts, ecosystem models and spatial planning. We compiled a geo-spatial database of published data on cetacean abundance from dedicated visual line-transect surveys and encoded >1100 abundance estimates for 47 species from 430 surveys conducted worldwide from 1975–2005. Our subsequent analyses revealed large spatial, temporal and taxonomic variability and gaps in survey coverage. With the exception of Antarctic waters, survey coverage was biased toward the northern hemisphere, especially US and northern European waters. Overall, <25% of the world's ocean surface was surveyed and only 6% had been covered frequently enough (≥5 times) to allow trend estimation. Almost half the global survey effort, defined as total area (km2) covered by all survey study areas across time, was concentrated in the Eastern Tropical Pacific (ETP). Neither the number of surveys conducted nor the survey effort had increased in recent years. Across species, an average of 10% of a species' predicted range had been covered by at least one survey, but there was considerable variation among species. With the exception of three delphinid species, <1% of all species' ranges had been covered frequently enough for trend analysis. Sperm whales emerged from our analyses as a relatively data-rich species. This is a notoriously difficult species to survey visually, and we use this as an example to illustrate the challenges of using available data from line-transect surveys for the detection of trends or for spatial planning. We propose field and analytical methods to fill in data gaps to improve cetacean conservation efforts.
In large social groups acoustic communication signals are prone to signal masking by conspecific sounds. Bottlenose dolphins (Tursiops truncatus) use highly distinctive signature whistles that counter masking effects. However, they can be found in very large groups where masking by conspecific sounds may become unavoidable. In this study we used passive acoustic localization to investigate how whistle rates of wild bottlenose dolphins change in relation to group size and behavioral context. We found that individual whistle rates decreased when group sizes got larger. Dolphins displayed higher whistle rates in contexts when group members were more dispersed as in socializing and in nonpolarized movement than during coordinated surface travel. Using acoustic localization showed that many whistles were produced by groups nearby and not by our focal group. Thus, previous studies based on single hydrophone recordings may have been overestimating whistle rates. Our results show that although bottlenose dolphins whistle more in social situations they also decrease vocal output in large groups where the potential for signal masking by other dolphin whistles increases.
The distribution, movements and abundance of highly mobile marine species such as bottlenose dolphins Tursiops truncatus are best studied at large spatial scales, but previous research effort has generally been focused on relatively small areas, occupied by populations with high site fidelity. We aimed to characterize the distribution, movements and abundance of bottlenose dolphins around the coasts of Scotland, exploring how data from multiple sources could be integrated to build a broader‐scale picture of their ecology. We reviewed existing historical data, integrated data from ongoing studies and developed new collaborative studies to describe distribution patterns. We adopted a Bayesian multi‐site mark‐recapture model to estimate abundance of bottlenose dolphins throughout Scottish coastal waters and quantified movements of individuals between study areas. The majority of sightings of bottlenose dolphins around the Scottish coastline are concentrated on the east and west coasts, but records are rare before the 1990s. Dedicated photo‐identification studies in 2006 and 2007 were used to estimate the size of two resident populations: one on the east coast from the Moray Firth to Fife, population estimate 195 [95% highest posterior density intervals (HPDI): 162–253] and the second in the Hebrides, population estimate 45 (95% HPDI: 33–66). Interaction parameters demonstrated that the dolphins off the east coast of Scotland are highly mobile, whereas those off the west coast form two discrete communities. We provide the first comprehensive assessment of the abundance of bottlenose dolphins in the inshore waters of Scotland. The combination of dedicated photo‐identification studies and opportunistic sightings suggest that a relatively small number of bottlenose dolphins (200–300 individuals) occur regularly in Scottish coastal waters. On both east and west coasts, re‐sightings of identifiable individuals indicate that the animals have been using these coastal areas since studies began.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.