In this work we build a stack of machine learning models aimed at composing a state-of-the-art credit rating and default prediction system, obtaining excellent out-of-sample performances. Our approach is an excursion through the most recent ML / AI concepts, starting from natural language processes (NLP) applied to economic sectors' (textual) descriptions using embedding and autoencoders (AE), going through the classification of defaultable firms on the base of a wide range of economic features using gradient boosting machines (GBM) and calibrating their probabilities paying due attention to the treatment of unbalanced samples. Finally we assign credit ratings through genetic algorithms (differential evolution, DE). Model interpretability is achieved by implementing recent techniques such as SHAP and LIME, which explain predictions locally in features' space.
We analyse the effectiveness of modern deep learning techniques in predicting credit ratings over a universe of thousands of global corporate entities obligations when compared to most popular, traditional machine-learning approaches such as linear models and tree-based classifiers. Our results show a adequate accuracy over different rating classes when applying categorical embeddings to artificial neural networks (ANN) architectures.JEL Classification codes: C45, C55, G24 AMS Classification codes: 62M45, 91G40
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.