Neutrophils are key effector cells of the innate immune response and are required to migrate and function within adverse microenvironmental conditions. These inflammatory sites are characterized by low levels of oxygen and glucose and high levels of reductive metabolites. A major regulator of neutrophil functional longevity is the ability of these cells to undergo apoptosis. We examined the mechanism by which hypoxia causes an inhibition of neutrophil apoptosis in human and murine neutrophils. We show that neutrophils possess the hypoxia-inducible factor (HIF)-1α and factor inhibiting HIF (FIH) hydroxylase oxygen-sensing pathway and using HIF-1α–deficient myeloid cells demonstrate that HIF-1α is directly involved in regulating neutrophil survival in hypoxia. Gene array, TaqMan PCR, Western blotting, and oligonucleotide binding assays identify NF-κB as a novel hypoxia-regulated and HIF-dependent target, with inhibition of NF-κB by gliotoxin or parthenolide resulting in the abrogation of hypoxic survival. In addition, we identify macrophage inflammatory protein-1β as a novel hypoxia-induced neutrophil survival factor.
Solid tumors are heterogeneous tissues composed of a mixture of cancer and normal cells, which complicates the interpretation of their molecular profiles. Furthermore, tissue architecture is generally not reflected in molecular assays, rendering this rich information underused. To address these challenges, we developed a computational approach based on standard hematoxylin and eosin-stained tissue sections and demonstrated its power in a discovery and validation cohort of 323 and 241 breast tumors, respectively. To deconvolute cellular heterogeneity and detect subtle genomic aberrations, we introduced an algorithm based on tumor cellularity to increase the comparability of copy number profiles between samples. We next devised a predictor for survival in estrogen receptor-negative breast cancer that integrated both image-based and gene expression analyses and significantly outperformed classifiers that use single data types, such as microarray expression signatures. Image processing also allowed us to describe and validate an independent prognostic factor based on quantitative analysis of spatial patterns between stromal cells, which are not detectable by molecular assays. Our quantitative, image-based method could benefit any large-scale cancer study by refining and complementing molecular assays of tumor samples.
Estrogen receptor (ER)-negative breast cancer shows a higher incidence in women of African ancestry compared to women of European ancestry. In search of common risk alleles for ER-negative breast cancer, we combined genome-wide association study (GWAS) data from women of African ancestry (1,004 ER-negative cases and 2,745 controls) and European ancestry (1,718 ER-negative cases and 3,670 controls), with replication testing conducted in an additional 2,292 ER-negative cases and 16,901 controls of European ancestry. We identified a common risk variant for ER-negative breast cancer at the TERT-CLPTM1L locus on chromosome 5p15 (rs10069690: per-allele odds ratio (OR) = 1.18 per allele, P = 1.0 × 10−10). The variant was also significantly associated with triple-negative (ER-negative, progesterone receptor (PR)-negative and human epidermal growth factor-2 (HER2)-negative) breast cancer (OR = 1.25, P = 1.1 × 10−9), particularly in younger women (<50 years of age) (OR = 1.48, P = 1.9 × 10−9). Our results identify a genetic locus associated with estrogen receptor negative breast cancer subtypes in multiple populations.
The cellular origin ol the sarcomatous component of gliosarcomas is controversial. It is not clear if the sarcoma arises in transition Irom the glial cells that comprise the gliomatous component or independently arises from non-neoplastic mesenchymal cells oí the tumor stroma. Using comparative genomic hybridization (CGH) along with cytogenetic analysis, fluorescence in situ hybridization (FISH) analysis, and polymerase chain reaction (PCR) analysis of microsatellite allelic imbalance, we have evaluated the genetic alterations in the gliomatous and sarcomatous components of five gliosarcomas. The glial element was grade 4 librillary astrocytoma (glioblastoma multiforme) in all five tumors. The sarcoma elements were fibroblastic without osseous* chondroid, or angiosareomatous differentiation. Gain of chromosome 7, loss of chromosome 10, deletions of the chromosome 9 p-arm. and alterations of chromosome 3 were frequently observed, demonstrating that gliosarcomas can be genetically classified as belonging to the spectrum of glioblastomas. Furthermore, the sarcomatous and gliomatous portions of each gliosareoma investigated were similar with respect to both the presence and absence of specific genetic alterations. This observation supports the hypothesis that the sarcomatous component of a gliosareoma either arises from the same common precursor cell as the gliomatous portion, or it arises from the gliomatous portion itself.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.