Oligodendroglial tumors may not be distinguished easily from other brain tumors based on clinical presentation and magnetic resonance imaging (MRI) alone. Identification of these tumors however may have therapeutic consequences. The purpose of this study was to characterize and identify oligodendrogliomas by their metabolic profile as measured by 1 H MR spectroscopic imaging (MRSI). Fifteen patients with oligodendroglial tumors (eight high-grade oligodendrogliomas, seven low-grade oligodendrogliomas) underwent MRI and short echo time 1 H MRSI examinations. Five main metabolites found in brain MR spectra were quantified and expressed as ratios of tumor to contralateral white matter tissue. The level of lipids plus lactate was also assessed in the tumor. For comparison six patients with a low grade astrocytoma were also included in the study. The metabolic profile of oligodendrogliomas showed a decreased level of N-acetylaspartate and increased levels of choline-containing compounds and glutamine plus glutamate compared with white matter. The level of glutamine plus glutamate was significantly higher in low-grade oligodendrogliomas than in low-grade astrocytomas and may serve as a metabolic marker in diagnosis and treatment planning. In high-grade oligodendrogliomas large resonances of lipids plus lactate were observed in contrast to low-grade tumors.
The cellular origin ol the sarcomatous component of gliosarcomas is controversial. It is not clear if the sarcoma arises in transition Irom the glial cells that comprise the gliomatous component or independently arises from non-neoplastic mesenchymal cells oí the tumor stroma. Using comparative genomic hybridization (CGH) along with cytogenetic analysis, fluorescence in situ hybridization (FISH) analysis, and polymerase chain reaction (PCR) analysis of microsatellite allelic imbalance, we have evaluated the genetic alterations in the gliomatous and sarcomatous components of five gliosarcomas. The glial element was grade 4 librillary astrocytoma (glioblastoma multiforme) in all five tumors. The sarcoma elements were fibroblastic without osseous* chondroid, or angiosareomatous differentiation. Gain of chromosome 7, loss of chromosome 10, deletions of the chromosome 9 p-arm. and alterations of chromosome 3 were frequently observed, demonstrating that gliosarcomas can be genetically classified as belonging to the spectrum of glioblastomas. Furthermore, the sarcomatous and gliomatous portions of each gliosareoma investigated were similar with respect to both the presence and absence of specific genetic alterations. This observation supports the hypothesis that the sarcomatous component of a gliosareoma either arises from the same common precursor cell as the gliomatous portion, or it arises from the gliomatous portion itself.
In contrast to astrocytic tumors, approximately two thirds of anaplastic oligodendrogliomas are reported to be chemosensitive. Relatively little is known about the genetic aberrations in oligodendroglial tumors (OTs). In order to elucidate oligodendroglial oncogenesis and to find specific genetic aberrations that may have prognostic and therapeutic implications, we performed comparative genomic hybridization (CGH) to detect chromosomal copy number changes in 17 low-grade OTs (LG-OTs) and 12 high-grade OTs (HG-OTs) lacking a prominent astrocytic component. Loss of chromosome 1p (79%) and 19q (76%) were most frequently detected by CGH, all LG-OTs and 50% of the HG-OTs contained -1p (including 1p36-32), -19q (including 19q13.3), or both, and the rest of the HG-OTs showed +7, -10, or both. Since losses of 1p36-32 and 19q13.3 were mutually exclusive with +7 or -10, the HG-OTs could be divided in -1p/-19q and +7/-10 tumors. While the -1p/-19q tumors can be considered as pure anaplastic oligodendrogliomas, the +7/-10 tumors may rather be glioblastomas with prominent oligodendroglial differentiation. We conclude that CGH is a powerful tool to assist in the identification of 2 major subgroups of HG-OTs with prognostic and possibly therapeutic relevance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.