Head and neck squamous cell carcinoma (HNSCC) is known to overexpress a variety of receptor tyrosine kinases, such as the HGF receptor Met. Like other malignancies, HNSCC involves a mutual interaction between the tumor cells and surrounding tissues and cells. We hypothesized that activation of HGF/Met signaling in HNSCC influences glucose metabolism and therefore substantially changes the tumor microenvironment. To determine the effect of HGF, we submitted three established HNSCC cell lines to mRNA sequencing. Dynamic changes in glucose metabolism were measured in real time by an extracellular flux analyzer. As expected, the cell lines exhibited different levels of Met and responded differently to HGF stimulation. As confirmed by mRNA sequencing, the level of Met expression was associated with the number of upregulated HGF-dependent genes. Overall, Met stimulation by HGF leads to increased glycolysis, presumably mediated by higher expression of three key enzymes of glycolysis. These effects appear to be stronger in Methigh-expressing HNSCC cells. Collectively, our data support the hypothesized role of HGF/Met signaling in metabolic reprogramming of HNSCC.
Head and neck squamous cell carcinoma (HNSCC) is a widespread disease with a low survival rate and a high risk of recurrence. Nowadays, immune checkpoint inhibitor (ICI) treatment is approved for HNSCC as a first-line treatment in recurrent and metastatic disease. ICI treatment yields a clear survival benefit, but overall response rates are still unsatisfactory. As shown in different cancer models, hepatocyte growth factor/mesenchymal–epithelial transition (HGF/Met) signaling contributes to an immunosuppressive microenvironment. Therefore, we investigated the relationship between HGF and programmed cell death protein 1 (PD-L1) expression in HNSCC cell lines. The preclinical data show a robust PD-L1 induction upon HGF stimulation. Further analysis revealed that the HGF-mediated upregulation of PD-L1 is MAP kinase-dependent. We then hypothesized that serum levels of HGF and soluble programmed cell death protein 1 (sPD-L1) could be potential markers of ICI treatment failure. Thus, we determined serum levels of these proteins in 20 HNSCC patients before ICI treatment and correlated them with treatment outcomes. Importantly, the clinical data showed a positive correlation of both serum proteins (HGF and sPD-L1) in HNSCC patient’s sera. Moreover, the serum concentration of sPD-L1 was significantly higher in ICI non-responsive patients. Our findings indicate a potential role for sPD-L1 as a prognostic marker for ICI treatment in HNSCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.