Birds are generally thought to have excellent vision with high spatial resolution. However, spatial contrast sensitivity of birds for stationary targets is low compared to other animals with similar acuity, such as mammals. For fast flying animals body stability and coordination are highly important, and visual motion cues are known to be relevant for flight control. We have tested five budgerigars (Melopsittacus undulatus) in behavioural discrimination experiments to determine whether or not stimulus motion improves contrast sensitivity. The birds were trained to distinguish between a homogenous grey field and sine-wave gratings of spatial frequencies between 0.48 and 6.5 cyc/deg, and Michelson contrasts between 0.7% and 99%. The gratings were either stationary or drifting with velocities between 0.9 and 13 deg/s. Budgerigars were able to discriminate patterns of lower contrast from grey when the gratings were drifting, and the improvement in sensitivity was strongest at lower spatial frequencies and higher drift velocities. Our findings indicate that motion cues can have positive effects on visual perception of birds. This is similar to earlier results on human vision. Contrast sensitivity, tested solely with stationary stimuli, underestimates the sensory capacity of budgerigars flying through their natural environments.
While color vision and spatial resolution have been studied in many bird species, less is known about the temporal aspects of bird vision. High temporal resolution has been described in three species of passerines but it is unknown whether this is specific to passerines, to small actively flying birds, to insectivores or to birds living in bright habitats. Temporal resolution of vision is commonly tested by determining the flicker fusion frequency (FFF), at which the eye can no longer distinguish a flickering light from a constant light of equal intensity at different luminances. Using a food reward, we trained the birds to discriminate a constant light from a flickering light, at four different luminances between 750 and 7500 cd/m2. The highest FFF found in one bird at 3500 cd/m2 was 93 Hz. Three birds had higher FFF (82 Hz) at 7500 cd/m2 than at 3500 cd/m2. Six human subjects had lower FFF than the birds at 1500 but similar FFF at 750 cd/m2. These results indicate that high temporal resolution is not a common trait for all small and active birds living in bright light habitats. Whether it is typical for passerines or for insectivorous birds remains to be tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.