BackgroundWe report the initial results from a phase I clinical trial for ALS. We transplanted GMP-grade, fetal human neural stem cells from natural in utero death (hNSCs) into the anterior horns of the spinal cord to test for the safety of both cells and neurosurgical procedures in these patients. The trial was approved by the Istituto Superiore di Sanità and the competent Ethics Committees and was monitored by an external Safety Board.MethodsSix non-ambulatory patients were treated. Three of them received 3 unilateral hNSCs microinjections into the lumbar cord tract, while the remaining ones received bilateral (n = 3 + 3) microinjections. None manifested severe adverse events related to the treatment, even though nearly 5 times more cells were injected in the patients receiving bilateral implants and a much milder immune-suppression regimen was used as compared to previous trials.ResultsNo increase of disease progression due to the treatment was observed for up to18 months after surgery. Rather, two patients showed a transitory improvement of the subscore ambulation on the ALS-FRS-R scale (from 1 to 2). A third patient showed improvement of the MRC score for tibialis anterior, which persisted for as long as 7 months. The latter and two additional patients refused PEG and invasive ventilation and died 8 months after surgery due to the progression of respiratory failure. The autopsies confirmed that this was related to the evolution of the disease.ConclusionsWe describe a safe cell therapy approach that will allow for the treatment of larger pools of patients for later-phase ALS clinical trials, while warranting good reproducibility. These can now be carried out under more standardized conditions, based on a more homogenous repertoire of clinical grade hNSCs. The use of brain tissue from natural miscarriages eliminates the ethical concerns that may arise from the use of fetal material.Trial registrationEudraCT:2009-014484-39.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease lacking effective therapies. Cell replacement therapy has been suggested as a promising therapeutic approach for multiple neurodegenerative diseases, including motor neuron disease. We analyzed expanded mesenchymal stem cells (MSCs) isolated from sporadic ALS patients and compared them with MSCs isolated from healthy donors. MSCs were isolated from bone marrow by Percoll gradient and maintained in culture in MSC Medium until the third passage. Growth kinetics, immunophenotype, telomere length, and karyotype were evaluated during in vitro expansion. Osteogenic, adipogenic, chondrogenic, and neurogenic differentiation potential were also evaluated. No morphological differences were observed in the MSCs isolated from donors or patients. The cellular expansion potential of MSCs from donors and patients was slightly different. After three passages, the MSCs isolated from donors reached a cumulative population doubling higher than from patients but the difference was not statistically significant. No significant differences between donors or patients were observed in the immunophenotype analysis. No chromosomal alteration or evidence of cellular senescence was observed in any samples. Both donor and patient MSCs, after exposure to specific conditioning media, differentiated into adipocytes, osteoblasts, chondrocytes, and neuron-like cells. These results suggest that extensive in vitro expansion of patient MSCs does not involve any functional modification of the cells, including chromosomal alterations or cellular senescence. Hence, there is a good chance that MSCs might be used as a cell-based therapy for ALS patients.
Background The coronavirus disease 2019 global pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), began in late 2019. Researchers around the world are aggressively working to develop a vaccine. One of the vaccines approved against COVID-19 is Oxford-AstraZeneca chimpanzee adenovirus vectored vaccine ChAdOx1 nCoV-19. Case report We described a patient who developed four limb distal paraesthesia, postural instability, and facial diplegia, ten days after vaccination with ChAdOx1 nCoV-19 (ABW1277). The electrophysiological findings were compatible with acute demyelinating motor polyneuropathy (Guillain-Barrè syndrome). Discussion We therefore want to describe a temporal correlation between administration of ChAdOx1 nCoV-19 (ABW1277) vaccine and GBS without evidence of other predisposing infectious or autoimmune factors. This paper aims to highlight the importance of pharmacovigilance and subsequent reports will be needed to evaluate the possible correlation between these two events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.