In this paper, we propose two metrics, i.e., the optimal repair time and the resilience reduction worth, to measure the criticality of the components of a network system from the perspective of their contribution to system resilience. Specifically, the two metrics quantify: 1) the priority with which a failed component should be repaired and re-installed into the network and 2) the potential loss in the optimal system resilience due to a time delay in the recovery of a failed component, respectively. Given the stochastic nature of disruptive events on infrastructure networks, a Monte Carlo-based method is proposed to generate probability distributions of the two metrics for all of the components of the network; then, a stochastic ranking approach based on the Copeland's pairwise aggregation is used to rank components importance. Numerical results are obtained for the IEEE 30-bus test network and a comparison is made with three classical centrality measures
. Simulation-based exploration of highdimensional system models for identifying unexpected events. Reliability Engineering and System Safety.http://dx.doi.org/10.1016/j.ress.2017.04.004Simulation-based exploration of high-dimensional system models for identifying unexpected events AbstractMathematical numerical models are increasingly employed to simulate system behavior and identify sequences of events or configurations of the system's design and operational parameters that can lead the system to extreme conditions (Critical Region, CR). However, when a numerical model is: i) computationally expensive, ii) high-dimensional, and iii) complex, these tasks become challenging.In this paper, we propose an adaptive framework for efficiently tackling this problem: i) a dimensionality reduction technique is employed for identifying the factors and variables that most affect the system behavior; ii) a meta-model is sequentially trained to replace the computationally expensive model with a computationally cheap one; iii) an adaptive exploration algorithm based on Markov Chain Monte Carlo is introduced for exploring the system state space using the meta-model; iv) clustering and other techniques for the visualization of high dimensional data (e.g., parallel coordinates plot) are employed to summarize the retrieved information.The method is employed to explore a power network model involving 20 inputs. The CRs are properly identified with a limited computational cost, compared to another exploration technique of literature (i.e., Latin Hypercube Sampling).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.