Wave Energy is a widespread, reliable renewable energy source. The early study on Wave Energy dates back in the 70's, with a particular effort in the last and present decade to make Wave Energy Converters (WECs) more profitable and predictable. The PeWEC (Pendulum Wave Energy Converter) is a pendulum-based WEC. The research activities described in the present work aim to develop a pendulum converter for the Mediterranean Sea, where waves are shorter, thus with a higher frequency compared to the ocean waves, a characteristic well agreeing with the PeWEC frequency response. The mechanical equations of the device are developed and coupled with the hydrodynamic Cummins equation. The work deals with the design and experimental tank test of a 1:12 scale prototype. The experimental data recorded during the testing campaign are used to validate the numerical model previously described. The numerical model proved to be in good agreement with the experiments.
Friction is a complicated phenomenon that plays a central role in a wide variety of physical systems. An accurate modeling of the friction forces is required in the model-based design approach, especially when the efficiency optimization and system controllability are the core of the design. In this work, a gyroscopic unit is considered as case study: the flywheel rotation is affected by different friction sources that needs to be compensated by the flywheel motor. An accurate modeling of the dissipations can be useful for the system efficiency optimization. According to the inertial sea wave energy converter (ISWEC) gyroscope layout, friction forces are modeled and their dependency with respect to the various physical quantities involved is examined. The mathematical model of friction forces is validated against the experimental data acquired during the laboratory testing of the ISWEC gyroscope. Moreover, in the wave energy field, it is common to work with scale prototypes during the full-scale device development. For this reason, the scale effect on dissipations has been correlated based on the Froude scaling law, which is commonly used for wave energy converter scaling. Moreover, a mixed Froude–Reynolds scaling law is taken into account, in order to maintain the scale of the fluid-dynamic losses due to flywheel rotation. The analytical study is accompanied by a series of simulations based on the properties of the ISWEC full-scale gyroscope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.