Tip-enhanced Raman spectroscopy (TERS) is a very powerful variant of surface-enhanced Raman spectroscopy (SERS). In a sense, TERS overcomes most of the drawbacks of SERS but keeps its advantages, such as its high sensitivity. TERS offers the additional advantages of high spatial resolution, much beyond the Abbe limit, and the possibility to correlate TER and other scanning probe microscope images, i.e., to correlate topographic and chemical data. TERS finds application in a number of fields, such as surface science, material science, and biology. Single-molecule TERS has been observed even for TERS enhancements of “only” 106–107. In this review, TERS enhancements are discussed in some detail, including a condensed overview of measured contrasts and estimated total enhancements. Finally, recent developments for TERS under ultrahigh vacuum conditions are presented, including TERS on a C60 island with a diameter of a few tens of nanometers, deposited on a smooth Au(111) surface.
We have studied enantiospecific differences in the adsorption of (S)- and (R)-alanine on Cu{531} R using low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy, and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. At saturation coverage, alanine adsorbs as alaninate forming a p(1 × 4) superstructure. LEED shows a significantly higher degree of long-range order for the S than for the R enantiomer. Also carbon K-edge NEXAFS spectra show differences between (S)- and (R)-alanine in the variations of the π resonance when the linear polarization vector is rotated within the surface plane. This indicates differences in the local adsorption geometries of the molecules, most likely caused by the interaction between the methyl group and the metal surface and/or intermolecular hydrogen bonds. Comparison with model calculations and additional information from LEED and photoelectron spectroscopy suggest that both enantiomers of alaninate adsorb in two different orientations associated with triangular adsorption sites on {110} and {311} microfacets of the Cu{531} surface. The experimental data are ambiguous as to the exact difference between the local geometries of the two enantiomers. In one of two models that fit the data equally well, significantly more (R)-alaninate molecules are adsorbed on {110} sites than on {311} sites whereas for (S)-alaninate the numbers are equal. The enantiospecific differences found in these experiments are much more pronounced than those reported from other ultrahigh vacuum techniques applied to similar systems.
Raman spectroscopy can provide 'fingerprints' of species at surfaces including their bonding sites and angles. However, the usually very weak Raman signal of adsorbed species impedes the application of this spectroscopy in surface science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.