The melaminophenyl arsenical melarsoprol is still used to treat African sleeping sickness, a disease caused by parasitic protozoa of the Trypanosoma brucei subgroup. Based on the observation that melamine antagonizes the trypanocidal activity of this class of drugs, we investigated whether other physiological compounds could compete for the same receptor. Here we report that the in vitro trypanolytic effect of melarsen oxide can be specifically abrogated by adenine, adenosine and dipyridamole, all of which compete for uptake by an adenosine transporter. Melarsen-sensitive trypanosomes have two high-affinity adenosine transport systems: a P1 type, which also transports inosine; and a P2 type, which also transports adenine and the melaminophenyl arsenicals. Melarsen-resistant trypanosomes lack P2 adenosine transport, suggesting that resistance to these arsenicals is due to loss of uptake.
The ability of Leishmania to survive in their insect or mammalian host is dependent upon an ability to sense and adapt to changes in the microenvironment. However, little is known about the molecular mechanisms underlying the parasite response to environmental changes, such as nutrient availability. To elucidate nutrient stress response pathways in Leishmania donovani, we have used purine starvation as the paradigm. The salvage of purines from the host milieu is obligatory for parasite replication; nevertheless, purine-starved parasites can persist in culture without supplementary purine for over three months, indicating that the response to purine starvation is robust and engenders parasite survival under conditions of extreme scarcity. To understand metabolic reprogramming during purine starvation we have employed global approaches. Whole proteome comparisons between purine-starved and purine-replete parasites over a 6–48 h span have revealed a temporal and coordinated response to purine starvation. Purine transporters and enzymes involved in acquisition at the cell surface are upregulated within a few hours of purine removal from the media, while other key purine salvage components are upregulated later in the time-course and more modestly. After 48 h, the proteome of purine-starved parasites is extensively remodeled and adaptations to purine stress appear tailored to deal with both purine deprivation and general stress. To probe the molecular mechanisms affecting proteome remodeling in response to purine starvation, comparative RNA-seq analyses, qRT-PCR, and luciferase reporter assays were performed on purine-starved versus purine-replete parasites. While the regulation of a minority of proteins tracked with changes at the mRNA level, for many regulated proteins it appears that proteome remodeling during purine stress occurs primarily via translational and/or post-translational mechanisms.
Plasmodium falciparum, the causative agent of the most lethal form of human malaria, is incapable of de novo purine synthesis, and thus, purine acquisition from the host is an indispensable nutritional requirement. This purine salvage process is initiated by the transport of preformed purines into the parasite. We have identified a gene encoding a nucleoside transporter from P. falciparum, PfNT1, and analyzed its function and expression during intraerythrocytic parasite development. PfNT1 predicts a polypeptide of 422 amino acids with 11 transmembrane domains that is homologous to other members of the equilibrative nucleoside transporter family. Southern analysis and BLAST searching of The Institute for Genomic Research (TIGR) malaria data base indicate that PfNT1 is a single copy gene located on chromosome 14. Northern analysis of RNA from intraerythrocytic stages of the parasite demonstrates that PfNT1 is expressed throughout the asexual life cycle but is significantly elevated during the early trophozoite stage. Functional expression of PfNT1 in Xenopus laevis oocytes significantly increases their ability to take up naturally occurring D-adenosine (K m ؍ 13.2 M) and D-inosine (K m ؍ 253 M). Significantly, PfNT1, unlike the mammalian nucleoside transporters, also has the capacity to transport the stereoisomer L-adenosine (K m > 500 M). Inhibition studies with a battery of purine and pyrimidine nucleosides and bases as well as their analogs indicate that PfNT1 exhibits a broad substrate specificity for purine and pyrimidine nucleosides. These data provide compelling evidence that PfNT1 encodes a functional purine/pyrimidine nucleoside transporter whose expression is strongly developmentally regulated in the asexual stages of the P. falciparum life cycle. Moreover, the unusual ability to transport L-adenosine and the vital contribution of purine transport to parasite survival makes PfNT1 an attractive target for therapeutic evaluation.
All parasitic protozoa studied to date are incapable of purine biosynthesis and must therefore salvage purine nucleobases or nucleosides from their hosts. This salvage process is initiated by purine transporters on the parasite cell surface. We have used a mutant line (TUBA5) of Leishmania donovani that is deficient in adenosine͞pyrimi-dine nucleoside transport activity (LdNT1) to clone genes encoding these nucleoside transporters by functional rescue. Parasitic protozoa of the genus Leishmania are the etiological agents of leishmaniasis, a disease that affects an estimated 12 million people worldwide (1) and ranges from the disfiguring cutaneous form to fatal visceral leishmaniasis (2). Because current empirically identified drugs suffer from many deficiencies, including toxicity and resistance, it is important to identify unique biochemical targets that could be exploited for rational development of improved therapies. Perhaps the most striking metabolic discrepancy between parasites and their hosts is the purine pathway. Whereas most mammalian cells synthesize purines de novo, all parasitic protozoa studied to date are unable to synthesize purines (3) and consequently must rely on purine acquisition from their hosts for survival and growth. The first step in this salvage pathway involves the transport of these substrates across the parasite plasma membrane. Moreover, these purine transporters initiate the uptake of certain pyrazolopyrimidine analogs of hypoxanthine and inosine that are toxic to both Leishmania and Trypanosoma (4). These pyrazolopyrimidines, such as allopurinol, allopurinol riboside, and formycin B, are subsequently metabolized to the nucleotide level by the parasite metabolic machinery and incorporated into RNA, metabolic transformations that do not occur in mammalian cells (4). Both the essential nutritional function of these transporters and their roles in mediating the toxicities of well-characterized antiparasitic agents provide compelling rationale to study these membrane permeases at the molecular level.Biochemical and genetic studies have established that Leishmania donovani parasites express two distinct nucleoside transporters with nonoverlapping substrate specificities (5). One transporter mediates the uptake of adenosine and pyrimidine nucleosides and also transports tubercidin, a cytotoxic analog of adenosine, whereas the other transporter allows membrane permeation of guanosine, inosine, and formycin B (5). Parasites deficient in either or both transport activities have been isolated by mutagenesis with N-methyl-NЈ-nitro-N-nitrosoguanidine followed by selection in tubercidin or formycin B (6). The availability of these null mutants provided a functional strategy for cloning genes encoding each of these nucleoside permeases.In the present study, we have transfected the adenosine͞pyrimidine nucleoside transport-deficient TUBA5 cell line with a cosmid library containing inserts of L. donovani genomic DNA (7) and screened individual transfectants for restoration of tubercidin...
A knockout strain of Leishmania donovani lacking both ornithine decarboxylase (ODC) alleles has been created by targeted gene replacement. Growth of ⌬odc cells in polyamine-deficient medium resulted in a rapid and profound depletion of cellular putrescine pools, although levels of spermidine were relatively unaffected. Concentrations of trypanothione, a spermidine conjugate, were also reduced, whereas glutathione concentrations were augmented. The ⌬odc L. donovani exhibited an auxotrophy for polyamines that could be circumvented by the addition of the naturally occurring polyamines, putrescine or spermidine, to the culture medium. Whereas putrescine supplementation restored intracellular pools of both putrescine and spermidine, exogenous spermidine was not converted back to putrescine, indicating that spermidine alone is sufficient to meet the polyamine requirement, and that L. donovani does not express the enzymatic machinery for polyamine degradation. The lack of a polyamine catabolic pathway in intact parasites was confirmed radiometrically. In addition, the ⌬odc strain could grow in medium supplemented with either 1,3-diaminopropane or 1,5-diaminopentane (cadaverine), but polyamine auxotrophy could not be overcome by other aliphatic diamines or spermine. These data establish genetically that ODC is an essential gene in L. donovani, define the polyamine requirements of the parasite, and reveal the absence of a polyamine-degradative pathway.Polyamines are cationic compounds that play essential roles in cell proliferation, differentiation, and macromolecular synthesis (1-3). Ornithine decarboxylase (ODC) 1 catalyzes the conversion of ornithine to putrescine (1,4-diaminobutane) and is the initial and rate-limiting enzyme in polyamine biosynthesis in most organisms (4). The ODC enzyme of protozoan parasites is a novel therapeutic target, because D,L-␣-difluoromethylornithine (DFMO; eflornithine), an irreversible inhibitor of ODC (5), exhibits notable efficacy against the central nervous system phase of African sleeping sickness caused by Trypanosoma brucei gambiense (3, 6). DFMO is also active against T. b. rhodesiense and T. congolense in murine models and has proven effective against other genera of protozoan parasites in vivo and in vitro, including Plasmodia (7), Giardia (8), and Leishmania (9). DFMO has been shown to induce a lethal polyamine depletion in both T. brucei (10) and L. donovani (9), the etiologic agent of visceral leishmaniasis, and toxicity to both species is ameliorated by polyamine addition (3, 9).The ability of trypanosomatids to undergo a very high frequency of homologous recombination allows the disruption of chromosomal loci with transfected drug resistance cassettes (11,12) and permits a direct test of gene function. This enables the creation of conditionally lethal parasite strains whose survival and ability to propagate are dependent upon the provision of compounds that can ameliorate the consequences of the genetic lesion. This genetic approach is predicated on the availability of c...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.