Polysomnography (PSG) is a fundamental diagnostical method for the detection of Obstructive Sleep Apnea Syndrome (OSAS). Historically, trained physicians have been manually identifying OSAS episodes in individuals based on PSG recordings. Such a task is highly important for stroke patients, since in such cases OSAS is linked to higher mortality and worse neurological deficits. Unfortunately, the number of strokes per day vastly outnumbers the availability of polysomnographs and dedicated healthcare professionals. The data in this work pertains to 30 patients that were admitted to the stroke unit of the Udine University Hospital, Italy. Unlike previous studies, exclusion criteria are minimal. As a result, data are strongly affected by noise, and individuals may suffer from several comorbidities. Each patient instance is composed of overnight vital signs data deriving from multi-channel ECG, photoplethysmography and polysomnography, and related domain expert’s OSAS annotations. The dataset aims to support the development of automated methods for the detection of OSAS events based on just routinely monitored vital signs, and capable of working in a real-world scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.