Mutations in the FBXO7 (PARK15) gene have been implicated in a juvenile form of parkinsonism termed parkinsonian pyramidal syndrome (PPS), characterized by Parkinsonian symptoms and pyramidal tract signs. FBXO7 (F-box protein only 7) is a subunit of the SCF (SKP1/cullin-1/F-box protein) E3 ubiquitin ligase complex, but its relevance and function in neurons remain to be elucidated. Here, we report that the E3 ligase FBXO7-SCF binds to and ubiquitinates the proteasomal subunit PSMA2. In addition, we show that FBXO7 is a proteasome-associated protein involved in proteasome assembly. In FBXO7 knockout mice, we find reduced proteasome activity and early-onset motor deficits together with premature death. In addition, we demonstrate that NEX (neuronal helixloop-helix protein-1)-Cre-induced deletion of the FBXO7 gene in forebrain neurons or the loss of FBXO7 in tyrosine hydroxylase (TH)-positive neurons results in motor defects, reminiscent of the phenotype in PARK15 patients. Taken together, our study establishes a vital role for FBXO7 in neurons, which is required for proper motor control and accentuates the importance of FBXO7 in proteasome function.
Animals rely on mechanosensory feedback from proprioceptors to control locomotory body movements. Unexpectedly, we found that this movement control requires visual opsins. Disrupting the Drosophila opsins NINAE or Rh6 impaired larval locomotion and body contractions, independently of light and vision. Opsins were detected in chordotonal proprioceptors along the larval body, localizing to their ciliated dendrites. Loss of opsins impaired mechanically evoked proprioceptor spiking and cilium ultrastructure. Without NINAE or Rh6, NOMPC mechanotransduction channels leaked from proprioceptor cilia and ciliary Inactive (Iav) channels partly disappeared. Locomotion is shown to require opsins in proprioceptors, and the receptors are found to express the opsin gene Rh7, in addition to ninaE and Rh6. Besides implicating opsins in movement control, this documents roles of non-ciliary, rhabdomeric opsins in cilium organization, providing a model for a key transition in opsin evolution and suggesting that structural roles of rhabdomeric opsins preceded their use for light detection.
SUMMARYAxon growth is an essential event during brain development and is extremely limited due to extrinsic and intrinsic inhibition in the adult brain. The E3 ubiquitin ligase Cdh1-anaphase promoting complex (APC) has emerged as an important intrinsic suppressor of axon growth. In this study, we identify in rodents the E3 ligase Smurf1 as a novel substrate of Cdh1-APC and that Cdh1 targets Smurf1 for degradation in a destruction box-dependent manner. We find that Smurf1 acts downstream of Cdh1-APC in axon growth and that the turnover of RhoA by Smurf1 is important in this process. In addition, we demonstrate that acute knockdown of Smurf1 in vivo in the developing cerebellar cortex results in impaired axonal growth and migration. Finally, we show that a stabilized form of Smurf1 overrides the inhibition of axon growth by myelin. Taken together, we uncovered a Cdh1-APC/Smurf1/RhoA pathway that mediates axonal growth suppression in the developing mammalian brain.
Neuronal development requires proper migration, polarization and establishment of axons and dendrites. Growing evidence identifies the ubiquitin proteasome system (UPS) with its numerous components as an important regulator of various aspects of neuronal development. F-box proteins are interchangeable subunits of the Cullin-1 based E3 ubiquitin ligase, but only a few family members have been studied. Here, we report that the centrosomal E3 ligase FBXO31-SCF (Skp1/Cullin-1/F-box protein) regulates neuronal morphogenesis and axonal identity. In addition, we identified the polarity protein Par6c as a novel interaction partner and substrate targeted for proteasomal degradation in the control of axon but not dendrite growth. Finally, we ascribe a role for FBXO31 in dendrite growth and neuronal migration in the developing cerebellar cortex. Taken together, we uncovered the centrosomal E3 ligase FBXO31-SCF as a novel regulator of neuronal development.
The orphan cytokine receptor-like factor 3 (CRLF3) was identified as a neuroprotective erythropoietin receptor in locust neurons and emerged with the evolution of the eumetazoan nervous system. Human CRLF3 belongs to class I helical cytokine receptors that mediate pleiotropic cellular reactions to injury and diverse physiological challenges. It is expressed in various tissues including the central nervous system but its ligand remains unidentified. A CRLF3 ortholog in the holometabolous beetle Tribolium castaneum was recently shown to induce anti-apoptotic mechanisms upon stimulation with human recombinant erythropoietin. To test the hypothesis that CRLF3 represents an ancient cell-protective receptor for erythropoietin-like cytokines, we investigated its presence across metazoan species. Furthermore, we examined CRLF3 expression and function in the hemimetabolous insect Locusta migratoria. Phylogenetic analysis of CRLF3 sequences indicated that CRLF3 is absent in Porifera, Placozoa and Ctenophora, all lacking the traditional nervous system. However, it is present in all major eumetazoan groups ranging from cnidarians over protostomians to mammals. The CRLF3 sequence is highly conserved and abundant amongst vertebrates. In contrast, relatively few invertebrates express CRLF3 and these sequences show greater variability, suggesting frequent loss due to low functional importance. In L. migratoria, we identified the transcript Lm-crlf3 by RACE-PCR and detected its expression in locust brain, skeletal muscle and hemocytes. These findings correspond to the ubiquitous expression of crlf3 in mammalian tissues. We demonstrate that the sole addition of double-stranded RNA to the culture medium (called soaking RNA interference) specifically interferes with protein expression in locust primary brain cell cultures. This technique was used to knock down Lm-crlf3 expression and to abolish its physiological function. We confirmed that recombinant human erythropoietin rescues locust brain neurons from hypoxia-induced apoptosis and showed that this neuroprotective effect is absent after knocking down Lm-crlf3. Our results affirm the erythropoietin-induced neuroprotective function of CRLF3 in a second insect species from a different taxonomic group. They suggest that the phylogenetically conserved CRLF3 receptor may function as a cell protective receptor for erythropoietin or a structurally related cytokine also in other animals including vertebrate and mammalian species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.