To define the dynamics of cardiovascular adjustments to apnoea during immersion, beat-to-beat heart rate (HR) and systolic (SBP) and diastolic (DBP) blood pressures were recorded in six divers during and after prolonged apnoeas while resting fully immersed in 27 degrees C water. Apnoeas lasted 215 +/- 35 s. Compared to control values, HR decreased by 20 beats min(-1) and SBP and DBP increased by 23 and 17 mmHg, respectively, in the initial 20 +/- 3 s (phase I). Both HR and BP remained stable during the following 92 +/- 15 s (phase II). Subsequently, during the final 103 +/- 29 s, SBP and DBP increased linearly to values about 60% higher than control, whereas HR remained unchanged (phase III). Cardiac output (Q') decreased by 35% in phase I and did not further change in phases II and III. Compared to control, total peripheral resistances were twice and three times higher than control, respectively, at the end of phases I and III. After resumption of breathing, HR and BP returned to control values in 5 and 30 s, respectively. The time courses of cardiovascular adjustments to immersed breath-holding indicated that cardiac response took place only at the beginning of apnoea. In contrast, vascular responses showed two distinct adjustments. This pattern suggests that the chronotropic control via the baroreflex is modified during apnoea. These cardiovascular changes during immersed static apnoea are in agreement with those already reported for static dry apnoeas.
The purpose of the study was to analyze the ultrasound lung comets (ULCs) variation, which are a sign of extra-vascular lung water. Forty-two healthy individuals performed breath-hold diving in different conditions: dynamic surface apnea; deep variable-weight apnea and shallow, face immersed without effort (static maximal and non-maximal). The number of ULCs was evaluated by means of an ultrasound scan of the chest, before and after breath-hold diving sessions. The ULC score increased significantly from baseline after dynamic surface apnea (p = 0.0068), after deep breath-hold sessions (p = 0.0018), and after static maximal apnea (p = 0.031). There was no statistically significant difference between the average increase of ULC scores after dynamic surface apnea and deep breath-hold diving. We, therefore, postulate that extravascular lung water accumulation may be due to other factors than (deep) immersion alone, because it occurs during dynamic surface apnea as well. Three mechanisms may be responsible for this. First, the immersion-induced hydrostatic pressure gradient applied on the body causes a shift of peripheral venous blood towards the thorax. Second, the blood pooling effect found during the diving response Redistributes blood to the pulmonary vascular bed. Third, it is possible that the intense involuntary diaphragmatic contractions occurring during the "struggle phase" of the breath-hold can also produce a blood shift from the pulmonary capillaries to the pulmonary alveoli. A combination of these factors may explain the observed increase in ULC scores in deep, shallow maximal and shallow dynamic apneas, whereas shallow non-maximal apneas seem to be not "ULC provoking".
Achievements in breath-hold diving depend, amongst others, on body oxygen stores at start of dive. A diver with very high lung volumes could increase dive's duration, and attain deeper depths for a given speed. Thus, we hypothesized that extreme breath-hold divers have very high lung volumes. On eight extreme breathhold divers (age 35 + 4 years, height 179 + 7 cm, body mass 76 + 6 kg) and 9 non-diving controls (age 37 + 6 years, height 177 + 4 cm, body mass 81 + 9 kg) residual volume, vital capacity and total lung capacity (TLC) were measured with a body plethysmograph. Forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV 1 ) were measured with a spirometer. Peak expiratory flow and flow-volume loops were measured with a pneumotachograph. In divers, but not in controls, volumes and capacities were systematically and significantly (p<0.01, paired t-test) higher than predicted from their body size. Consistently, volumes and capacities were significantly higher in divers than in controls, except for residual volume. Divers' TLC was 22% higher than predicted, and 21% higher than in controls. All divers' TLC was higher than 8 L, two had it higher than 9 L. FVC and FEV 1 were significantly higher in divers than in controls. The FEV 1 /FVC ratio was the same in both groups. We conclude that extreme breath-hold divers may constitute a niche population with physiological characteristics different from those of normal individuals, facilitating the achievement of excellent diving performances.
IntroductionNitric oxide (NO) is an essential signaling molecule modulating the endothelial adaptation during breath-hold diving (BH-diving). This study aimed to investigate changes in NO derivatives (NOx) and total antioxidant capacity (TAC), searching for correlations with different environmental and hyperbaric exposure.Materials and methodsBlood samples were obtained from 50 breath-hold divers (BH-divers) before, and 30 and 60 min after the end of training sessions performed both in a swimming pool or the sea. Samples were tested for NOx and TAC differences in different groups related to their hyperbaric exposure, experience, and additional genetic polymorphism.ResultsWe found statistically significant differences in NOx plasma concentration during the follow-up (decrease at T30 and increase at T60) compared with the pre-dive values. At T30, we found a significantly lower decrease of NOx in subjects with a higher diving experience, but no difference was detected between the swimming pool and Sea. No significant difference was found in TAC levels, as well as between NOx and TAC levels and the genetic variants.ConclusionThese data showed how NO consumption in BH-diving is significantly lower in the expert group, indicating a possible training-related adaptation process. Data confirm a significant NO use during BH-diving, compatible with the well-known BH-diving related circulatory adaptation suggesting that the reduction in NOx 30 min after diving can be ascribed to the lower NO availability in the first few minutes after the dives. Expert BH-divers suffered higher oxidative stress. A preliminary genetic investigation seems to indicate a less significant influence of genetic predisposition.
Background Breath-hold diving (BH-diving) is associated to extreme environmental conditions, prolonged physical activity, and complex adaptation mechanisms to supply enough O2 to vital organs. Consequently, one of the biggest effects could be an increased exercise-induced muscle fatigue, in both skeletal and cardiac muscles that can induce an increase of muscles injury markers including creatine kinase (CK), aspartate transferase (AST), and alanine transferase (ALT) when concerning the skeletal muscle, cardiac creatine kinase isoenzyme (CK-MBm) and cardiac troponin I (cTnI) when concerning the cardiac muscle, and lactate dehydrogenase (LDH) as index of muscle stress. The aim of this study is to investigate serum cardiac and skeletal muscle markers before and after a BH-diving training session. Results We found statistically significant increases of CK (T0: 136.1% p < 0.0001; T1: 138.5%, p < 0.0001), CK-MBm (T0: 145.1%, p < 0.0001; T1: 153.2%, p < 0.0001) LDH (T0: 110.4%, p < 0.0003; T1: 110.1%, p < 0.0013) in both T0 and T1 blood samples, as compared to basal value. AST showed a statistically significant increase only at T0 (106.8%, p < 0.0007) while ALT did not exhibit statistically significant changes. We did not find any changes in cTnI levels between pre-dive and post-dive samples. Conclusions Our data seem to indicate that during a BH-diving training session, skeletal and cardiac muscles react to physical effort releasing stress-related substances. Although the peculiar nature of BH-diving makes it difficult to understand if our results are related only to exercise induced muscle adaptation or whether acute hypoxia or a response to environmental changes (pressure) play a role to explain the observed changes, further studies are needed to better understand if these biomarker changes are linked to physical exercise or to acute hypoxia, or if both conditions play a role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.