Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.
To fully deploy the potential of semiconductor nanocrystal films as low-cost electronic materials, a better understanding of the amount of dopants required to make their conductivity metallic is needed. In bulk semiconductors, the critical concentration of electrons at the metal-insulator transition is described by the Mott criterion. Here, we theoretically derive the critical concentration nc for films of heavily doped nanocrystals devoid of ligands at their surface and in direct contact with each other. In the accompanying experiments, we investigate the conduction mechanism in films of phosphorus-doped, ligand-free silicon nanocrystals. At the largest electron concentration achieved in our samples, which is half the predicted nc, we find that the localization length of hopping electrons is close to three times the nanocrystals diameter, indicating that the film approaches the metal-insulator transition.Semiconductor nanocrystals (NCs) have shown great potential in optoelectronics applications such as solar cells [1], light emitting diodes [2], and field-effect transistors [3,4] by virtue of their size-tunable optical and electrical properties [5] and low-cost solution-based processing techniques [6,7]. These applications require conducting NC films and the introduction of extra carriers through doping can enhance the electrical conduction. Several strategies for NC doping have been developed. Remote doping, the use of suitable ligands as donors in the vicinity of NC surface, increased the conductivity of PbSe NC films by 12 orders of magnitude [8]. Electrochemical doping, which tunes the carrier concentration accurately and reversibly, resulted in conducting NC films [9,10]. Lately, stoichiometric control has emerged as a strategy to dope lead chalcogenide NCs [11]. Finally, electronic impurity doping of NCs, originally impeded by synthetic challenges [12], was recently achieved in InAs [13] and CdSe [14] NCs.While many experimental studies have been directed towards increasing the conductivity of NC films, there is still no clear consensus on the fundamental question: what is the condition for the metal-insulator transition (MIT) in NC films [15][16][17]? In a bulk semiconductor, the critical electron concentration n M for the MIT depends on the Bohr radius a B according to the well-known Mott criterion [18] n M a 3 B 0.02, where a B = ε 2 /m * e 2 is the effective Bohr radius (in Gaussian units), ε is the dielectric constant of the semiconductor, and m * is the effective electron mass. It is obvious that a dense film of undoped semiconductor NCs is an insulator, while a film of touching metallic NCs with the same geometry is a conductor. Therefore, the MIT has to occur in semiconductor NC films at some criti-FIG. 1. The origin of the metal-to-insulator transition in semiconductor nanocrystal films. The figure shows the cross section of two nanocrystals in contact through facets with radius ρ. The blue spherical cloud represents an electron wave packet which moves through the contact. Such a compact wave pac...
Metal oxide semiconductor nanocrystals (NCs) exhibit localized surface plasmon resonances (LSPRs) tunable within the infrared (IR) region of the electromagnetic spectrum by vacancy or impurity doping. Although a variety of these NCs have been produced using colloidal synthesis methods, incorporation and activation of dopants in the liquid phase has often been challenging. Herein, using Al-doped ZnO (AZO) NCs as an example, we demonstrate the potential of nonthermal plasma synthesis as an alternative strategy for the production of doped metal oxide NCs. Exploiting unique, thoroughly nonequilibrium synthesis conditions, we obtain NCs in which dopants are not segregated to the NC surfaces and local doping levels are high near the NC centers. Thus, we achieve overall doping levels as high as 2 × 10(20) cm(-3) in NCs with diameters ranging from 12.6 to 3.6 nm, and for the first time experimentally demonstrate a clear quantum confinement blue shift of the LSPR energy in vacancy- and impurity-doped semiconductor NCs. We propose that doping of central cores and heavy doping of small NCs are achievable via nonthermal plasma synthesis, because chemical potential differences between dopant and host atoms-which hinder dopant incorporation in colloidal synthesis-are irrelevant when NC nucleation and growth proceed via irreversible interactions among highly reactive gas-phase ions and radicals and ligand-free NC surfaces. We explore how the distinctive nucleation and growth kinetics occurring in the plasma influences dopant distribution and activation, defect structure, and impurity phase formation.
The doping of semiconductor nanocrystals (NCs), which is vital for the optimization of NC-based devices, remains a significant challenge. While gas-phase plasma approaches have been successful in incorporating dopant atoms into NCs, little is known about their electronic activation. Here, we investigate the electronic properties of doped silicon NC thin films cast from solution by field effect transistor analysis. We find that, analogous to bulk silicon, boron and phosphorus electronically dope Si NC thin films; however, the dopant activation efficiency is only ∼10(-2)-10(-4). We also show that surface doping of Si NCs is an effective way to alter the carrier concentrations in Si NC films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.