It is known that the anti-Wick (or standard coherent state) quantization of the complex plane produces both canonical commutation rule and quantum spectrum of the harmonic oscillator (up to the addition of a constant). In the present work, we show that these two issues are not necessarily coupled: there exists a family of separable Hilbert spaces, including the usual Fock-Bargmann space, and in each element in this family there exists an overcomplete set of unit-norm states resolving the unity. With the exception of the Fock-Bargmann case, they all produce non-canonical commutation relation whereas the quantum spectrum of the harmonic oscillator remains the same up to the addition of a constant. The statistical aspects of these non-equivalent coherent states quantizations are investigated. We also explore the localization aspects in the real line yielded by similar quantizations based on real Hermite polynomials.
A finite-dimensional Hilbert space is usually described in terms of an orthonormal basis, but in certain approaches or applications a description in terms of a finite overcomplete system of vectors, called a finite tight frame, may offer some advantages. The use of a finite tight frame may lead to a simpler description of the symmetry transformations, to a simpler and more symmetric form of invariants or to the possibility to define new mathematical objects with physical meaning, particularly in regard with the notion of a quantization of a finite set. We present some results concerning the use of integer coefficients and frame quantization, several examples and suggest some possible applications.Honeycomb lattice is a mathematical model for a graphene sheet and the use of the indicated frame leads to a simpler and more symmetric form for the G-invariant mathematical objects occuring in the description of certain physical properties [12].
The Schrödinger equations which are exactly solvable in terms of associated special functions are directly related to some self-adjoint operators defined in the theory of hypergeometric type equations. The fundamental formulae occurring in a supersymmetric approach to these Hamiltonians are consequences of some formulae concerning the general theory of associated special functions. We use this connection in order to obtain a general theory of Schrödinger equations exactly solvable in terms of associated special functions, and to extend certain results known in the case of some particular potentials.
The quantum observables used in the case of quantum systems with finitedimensional Hilbert space are defined either algebraically in terms of an orthonormal basis and discrete Fourier transformation or by using a continuous system of coherent states. We present an alternative approach to these important quantum systems based on the finite frame quantization. Finite systems of coherent states, usually called finite tight frames, can be defined in a natural way in the case of finite quantum systems. Novel examples of such tight frames are presented. The quantum observables used in our approach are obtained by starting from certain classical observables described by functions defined on the discrete phase space corresponding to the system. They are obtained by using a finite frame and a Klauder-Berezin-Toeplitz type quantization. Semi-classical aspects of tight frames are studied through lower symbols of basic classical observables.
A hypergeometric type equation satisfying certain conditions defines either a finite or an infinite system of orthogonal polynomials. We present in a unified and explicit way all these systems of orthogonal polynomials, the associated special functions and the corresponding raising/lowering operators. The equations considered are directly related to some Schrödinger type equations (Pöschl-Teller, Scarf, Morse, etc), and the special functions defined are related to the corresponding bound-state eigenfunctions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.