We present a method for personal authentication based on deformable matching of hand shapes. Authentication systems are already employed in domains that require some sort of user verification. Unlike previous methods on hand shape-based verification, our method aligns the hand shapes before extracting a feature set. We also base the verification decision on the shape distance which as automatically computed during the alignment stage. The shape distance proves to be a more reliable classijication criterion than the handcrafted feature sets used by previous systems. Our verification system attained a high level of accuracy: 96.5% genuine accept rate us. 2% false accept rate. This performance is further improved by learning an enrollment template shape for each user.
This paper reports a novel method for fully automated segmentation that is based on description of shape and its variation using point distribution models (PDM's). An improvement of the active shape procedure introduced by Cootes and Taylor to find new examples of previously learned shapes using PDM's is presented. The new method for segmentation and interpretation of deep neuroanatomic structures such as thalamus, putamen, ventricular system, etc. incorporates a priori knowledge about shapes of the neuroanatomic structures to provide their robust segmentation and labeling in magnetic resonance (MR) brain images. The method was trained in eight MR brain images and tested in 19 brain images by comparison to observer-defined independent standards. Neuroanatomic structures in all testing images were successfully identified. Computer-identified and observer-defined neuroanatomic structures agreed well. The average labeling error was 7%+/-3%. Border positioning errors were quite small, with the average border positioning error of 0.8+/-0.1 pixels in 256 x 256 MR images. The presented method was specifically developed for segmentation of neuroanatomic structures in MR brain images. However, it is generally applicable to virtually any task involving deformable shape analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.