This paper provides a general introduction to the concept of Implicit Human-Centered Tagging (IHCT) -the automatic extraction of tags from nonverbal behavioral feedback of media users. The main idea behind IHCT is that nonverbal behaviors displayed when interacting with multimedia data (e.g., facial expressions, head nods, etc.) provide information useful for improving the tag sets associated with the data. As such behaviors are displayed naturally and spontaneously, no effort is required from the users, and this is why the resulting tagging process is said to be "implicit". Tags obtained through IHCT are expected to be more robust than tags associated with the data explicitly, at least in terms of: generality (they make sense to everybody) and statistical reliability (all tags will be sufficiently represented). The paper discusses these issues in detail and provides an overview of pioneering efforts in the field.
Content-based image retrieval systems have to cope with two different regimes: understanding broadly the categories of interest to the user, and refining the search in this or these categories to converge to specific images among them. Here, in contrast with other types of retrieval systems, these two regimes are of great importance since the search initialization is hardly optimal (i.e. the page-zero problem) and the relevance feedback must tolerate the semantic gap of the image's visual features.We present a new approach that encompasses these two regimes, and infers from the user actions a seamless transition between them. Starting from a query-free approach meant to solve the page-zero problem, we propose an adaptive exploration/exploitation trade-off that transforms the original framework into a versatile retrieval framework with full searching capabilities. Our approach is compared to the state-of-the-art it extends by conducting user evaluations on a collection of 60,000 images from the ImageNet database.
It has been shown repeatedly that iterative relevance feedback is a very efficient solution for content-based image retrieval. However, no existing system scales gracefully to hundreds of thousands or millions of images.We present a new approach dubbed Hierarchical and Expandable Adaptive Trace (HEAT) to tackle this problem. Our approach modulates on-the-fly the resolution of the interactive search in different parts of the image collection, by relying on a hierarchical organization of the images computed off-line. Internally, the strategy is to maintain an accurate approximation of the probabilities of relevance of the individual images while fixing an upper bound on the required computation.Our system is compared on the ImageNet database to the state-of-the-art approach it extends, by conducting user evaluations on a sub-collection of 33,000 images. Its scalability is then demonstrated by conducting similar evaluations on 1,000,000 images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.