The food waste and losses (FW) became one of the most impacting aspects in modern society. This review article presents an overview of various aspects linked to the phenomenon of food losses in primary cereal production and its consequences. From the analysis of reviewed specific literature, it resulted that the losses are found both in the harvesting process and in the post-harvest processes (conditioning, separation, sorting, chemical treatment, transport etc.) these representing the primary processing of agricultural products, especially seeds. The review focuses on the new technologies’ influence in reducing FW in harvesting and post-harvesting process, highlighting the contribution of agricultural engineering studies on this specific topic
Environment pollution with heavy metals, can be a cause of the industrialization activities and technological processes, and has become an important issue. Soil contamination due to natural or anthropogenic causes (such as mining, smelting, warfare and military training, electronic industries, fossil fuel consumption, waste disposal, agrochemical use and irrigation) is a major environmental hazard. Various remediation techniques have been highlighted to clean or restore soils contaminated with heavy metals such physical, chemical or biological. Phytoremediation is a relatively new approach to removing contaminants from the environmental. It may be defined as the use of plants to remove, destroy or sequester hazardous substances from environmental. This paper is a review of removal of heavy metals from a contaminated soil using phytoremediation.
The main objective of this study was to evaluate the quality of essential oil (EO) and hydrolate (HY) obtained from a new Romanian variety of hyssop (Hyssopus officinalis L., Lamiaceae family), namely ‘Cătălin’. The chemical composition and the concentration of the compounds was established by gas chromatography coupled to mass spectrometry (GC/MS). The main constituents identified in hyssop EO and HY were cis-pinocamphone (34.63% and 67.00%), trans-pinocamphone (11.72% and 14.58%), thujenol (1.39% and 6.05%). The evaluation of the antioxidant capacity was performed by three methods (DPPH, ABTS and FRAP), EO proving a higher oxidizing activity compared to HY one. The antimicrobial activity of the essential oil was evaluated in vitro, in order to detect its ability to inhibit G- phytopathogenic bacteria (Pseudomonas syringae) and plant pathogenic fungi (Fusarium oxysporum). Eugenol, linalool and estragole standards were used as reference volatile compounds. Regarding Pseudomonas syringae (LMG5090) bacterium, assays showed that hyssop oil does not inhibit its growth. Estragole and eugenol showed pronounced antibacterial activity in all tested concentrations, both in the first 24 hours of incubation and after 3 days. Linalool instead has bacteriostatic activity only at high concentrations (50% and 100%), an inhibitory activity that is maintained only in the first 24 hours of incubation. The results obtained against Fusarium oxysporum reveal that the EO tested has no fungicidal activity but only fungistatic, and it is able to delay mycelial growth and the degree of inhibition depending on the concentration used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.