Isolation of the free bicyclic tetraamine, [3(5)]adamanzane.H(2)O (1,5,9,13-tetraazabicyclo[7.7.3]nonadecane.H(2)O), is reported along with the synthesis and characterization of a copper(II) complex of the smaller macrocycle [(2.3)(2).2(1)]adamanzane (1,5,9,12-tetraazabicyclo[7.5.2]hexadecane) and of three cobalt(II), four nickel(II), one copper(II), and two zinc(II) complexes with [3(5)]adamanzane. For nine of these compounds (2-8, 10b, and 12) the single-crystal X-ray structures were determined. The coordination geometry around the metal ion is square pyramidal in [Cu([(2.3)(2).2(1)]adz)Br]ClO(4) (2) and trigonal bipyramidal in the isostructural structures [Cu([3(5)]adz)Br]Br (3), [Ni([3(5)]adz)Cl]Cl (5), [Ni([3(5)]adz)Br]Br (6), and [Co([3(5)]adz)Cl]Cl (8). In [Ni([3(5)]adz)(NO(3))]NO(3) (4) and [Ni([3(5)]adz)(ClO(4))]ClO(4) (7) the coordination geometry around nickel(II) is a distorted octahedron with the inorganic ligands at cis positions. The coordination polyhedron around the metal ion in [Co([3(5)]adz)][ZnCl(4)] (10b) and [Zn([3(5)]adz)][ZnCl(4)] (12) is a slightly distorted tetrahedron. Anation equilibrium constants were determined spectrophotometrically for complexes 2-6 at 25 and 40 degrees C and fall in the region 2-10 M(-1) for the halide complexes and 30-65 M(-1) for the nickel(II) nitrate complex (4). Rate constants for the dissociation of the macrocyclic ligand from the metal ions in 5 M HCl were determined for complexes 2, 3, 5, 8, 10, and 12. The reaction rates vary from half-lives at 40 degrees C of 14 min for the dissociation of the Zn([3(5)]adz)(2+) complex (12) to 14-15 months for the Ni([3(5)]adz)Cl(+) ion (5).
The syntheses and characterization of a series of chromium() complexes of the general types trans-[(A) 4 Cr(OH)-(H 2 O)] 2ϩ , trans-[(A) 4 Cr(OH) 2 ] ϩ , and trans-[(A) 4 Cr(H 2 O) 2 ] 3ϩ are described. The ligands (A) 4 used include the tetradentate ligand 1,4,8,11-tetraazacyclotetradecane (cyclam), its hexamethylated derivative C-meso-5,5,7,12,12,14hexamethyl-1,4,8,11-tetraazacyclotetradecane (cyca), and the bidentate ligand 2-aminomethylpyridine (pico). The cobalt() aquahydroxo complexes with cyclam and cyca are also reported. The trans-diaqua and transdihydroxo complexes are monomeric, but the trans-aquahydroxo complexes form linear chains. The complexesand their corresponding perchlorates (2 and 4, respectively) have been isolated and the structures of the chromium triflate salt 1 and the cobalt perchlorate salt 4 have been determined. Both of these complexes 1 and 4 form infinite chains in the solid state, adjacent metal centers being bridged by hydrogen bonds between hydroxo and aqua ligands. The Cr ؒ ؒ ؒ Cr separation in 1 is 6.085 Å whereas the Co ؒ ؒ ؒ Co separation in 4 is 6.078 Å. The complex trans-[(pico) 2 Cr(OH 2 ) 2 ](NO 3 ) 3 ؒH 2 O 8 (where pico is picolylamine, 2-aminomethylpyridine) crystallizes with only one monomeric formula in a unit cell. In contrast to the structures of 1 and 4 (and, presumably, of 2 and 3 also), the two complexes trans-[Cr(cyclam)(OH) 2 ]-ClO 4 ؒH 2 O 5 and 8 are monomeric in the solid state. The chromium complex trans-[Cr(cyca)(OH)(H 2 O)](ClO 4 ) 2 ؒH 2 O 6 crystallizes with two monomeric formula units in a unit cell and the cobalt analogue 7 is isomorphous with the chromium complex. The structures of these complexes are also linear chains, but in this case there is an intervening water molecule between the aqua and hydroxo ligands on adjacent chromium centers. EPR spectroscopy of the chromium complex 1 doped in the diamagnetic cobalt host 3 reveals the presence of weak magnetic interactions. DALTON
Seven cobalt(III) complexes of the macrobicyclic tetraamine ligand [2(4).3(1)]adamanzane ([2(4).3(1)]adz) are reported along with the crystal structure of six of these complexes. The solid state and solution structures are discussed, and a detailed assignment of the NMR spectra of the sulfato complex is provided. Four of the seven complexes contain a chelate coordinating oxo-anion (sulfate, formiate, nitrate, carbonate). Equilibration of these species with the corresponding diaqua complex is generally slow. The rates of equilibration in 5 mol dm(-3) perchloric acid at 25 degrees C have been measured, yielding half lives of 20 min, 10 min and 3 h for the sulfato, formiato and carbonato species respectively. The corresponding reaction for the nitrato complex occurs with a half life of less than 3 min. The concentration acid dissociation constant for the Co([2(4).3(1)]adz)(HCO(3))(2+) ion has been measured to K(a) = 0.33 mol dm(-3) [25 degrees C, I = 2 mol dm(-3)] and K(a) = 0.15 mol dm(-3) [25 degrees C, I = 5 mol dm(-3)]. The propensity for coordination of sulfate was found to be large enough for a quantitative conversion of the carbonato complex to the sulfato complex to occur in 3 mol dm(-3) triflic acid containing a small sulfate contamination. On this basis the decarboxylation in 5 mol dm(-3) triflic acid of the corresponding cobalt(III) carbonato complex of the larger macrobicyclic tetraamine ligand [3(5)]adz was reinvestigated and found to lead to the sulfato complex as well. The difference in exchange rate of the oxo-anion ligands for the cobalt(III) complexes of the two adamanzane ligands is discussed and attributed to fundamental differences in the molecular structure where an inverted configuration of the secondary non-bridged amine groups is seen for the complexes of the larger [3(5)]adz ligand. The high affinity for chelating coordination of oxo-anions for these two cobalt(iii)-adamanzane-moieties is rationalised on basis of the N-Co-N angles. N-Co-N angles are compared for a series of adamanzane complexes, and the structural consequences are discussed.
Introduction Immunosuppressant drugs are increasingly being used in the reproductive years. Theoretically, such medications could affect fetal health either through changes in the sperm DNA or through fetal exposure caused by a presence in the seminal fluid. This systematic overview summarizes existing literature on the spermatotoxic and genotoxic potentials of methotrexate (MTX), a drug widely used to treat rheumatic and dermatologic diseases, and mycophenolate mofetil (MMF), which alone or supplemented with ganciclovir (GCV) may be crucial for the survival of organ transplants. Material and methods The systematic overview was performed in accordance with the PRISMA guidelines: A systematic literature search of the MEDLINE and Embase databases was done using a combination of relevant terms to search for studies on spermatotoxic or genotoxic changes related to treatment with MTX, GCV or MMF. The search was restricted to English language literature, and to in vivo animal studies (mammalian species) and clinical human studies. Results A total of 102 studies were identified, hereof 25 human and 77 animal studies. For MTX, human studies of immunosuppressive dosages show transient effect on sperm quality parameters, which return to reference values within 3 months. No human studies have investigated the sperm DNA damaging effect of MTX, but in other organs the genotoxic effects of immunosuppressive doses of MTX are fluctuating. In animals, immunosuppressive and cytotoxic doses of MTX adversely affect sperm quality parameters and show widespread genotoxic damages in various organs. Cytotoxic doses transiently change the DNA material in all cell stages of spermatogenesis in rodents. For GCV and MMF, data are limited and the results are indeterminate, for which reason spermatotoxic and genotoxic potentials cannot be excluded. Conclusions Data from human and animal studies indicate transient spermatotoxic and genotoxic potentials of immunosuppressive and cytotoxic doses of MTX. There are a limited number of studies investigating GCV and MMF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.