Inter- and intraspecific gene flow between inter- and intra-species gene pools is limited on the diploid level, and the geographical distribution of the diploids largely reflects Pleistocene evolutionary history. Secondary contact promoted hybridization and introgression on the polyploid level, enabling offspring to escape the diploid gene pools. However, the hybrid polyploids do not show significant niche differences compared to their diploid progenitors. It is concluded that the observed absence of niche divergence has precluded further differentiation and geographical partitioning of new polyploid lineages being effectively separated from the parental lines. The predominantly apomictic reproducing polyploids are trapped in the polyploid gene pool and the ecological climatic niche space of their diploid ancestors.
The coincidence of long distance dispersal and biome shift is assumed to be the result of a multifaceted interplay between geographical distance and ecological suitability of source and sink areas. Here, we test the influence of these factors on the dispersal history of the flowering plant genus Erica (Ericaceae) across the Afrotemperate. We quantify similarity of Erica climate niches per biogeographic area using direct observations of species, and test various colonisation scenarios while estimating ancestral areas for the Erica clade using parametric biogeographic model testing. We infer that the overall dispersal history of Erica across the Afrotemperate is the result of infrequent colonisation limited by geographic proximity and niche similarity. However, the Drakensberg Mountains represent a colonisation sink, rather than acting as a “stepping stone” between more distant and ecologically dissimilar Cape and Tropical African regions. Strikingly, the most dramatic examples of species radiations in Erica were the result of single unique dispersals over longer distances between ecologically dissimilar areas, contradicting the rule of phylogenetic biome conservatism. These results highlight the importance of rare biome shifts, in which a unique dispersal event fuels evolutionary radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.