The effect of salmon calcitonin on the maturation of the regenerate bone was assessed in an experimental model in rabbits. Twenty-six New Zealand White male rabbits, approximately 5 months old and weighing 3 to 3.5 kg, were subjected to a mid-diaphyseal tibial osteotomy. After 5 days, the right tibia was lengthened gradually at a rate of 0.375 mm every 12 hours, for 10 days. Ten international units of salmon calcitonin were administered daily subcutaneously to the study group (14 animals), whereas the animals of the control group (12 animals) were injected with a placebo, for the duration of the experiment. The bone mineral density of the regenerate bone was assessed on Days 20, 35, 45, and 55 of the experiment, in both groups, using dual energy xray absorptiometry. No statistical significant difference was found in the dual energy xray absorptiometry measurements between the study and control groups regarding the change of the bone mineral density of the new bone relative to a preoperative baseline measurement. Characteristic time-related changes were observed in the bone mineral density of the regenerate bone during its maturation, which proved to be identical in both groups. It seems that the administration of calcitonin does not enhance regenerate bone mineralization rate and tendency during bone lengthening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.