The aim of this work is to present a critical examination of both the available experimental data and the performance of the available heat transfer correlations for oil-free ammonia horizontal in-tube boiling at fin-and-tube-type air-to-refrigerant liquid overfeed evaporation conditions. First, a selection and comparison of the experimental database found in the open literature at the mentioned working conditions is presented. Subsequently, after a short description of the most relevant heat transfer correlations, and in accordance with the selected data, a detailed analysis of the performance of each correlation is carried out. Results show an important divergence between the experimental data sets and conclude that the presently available correlations show considerable discrepancies in heat transfer coefficients within the selected conditions.
The aim of this article is to present a distributed numerical model that simulates the thermal and fluid-dynamic phenomena inside non-adiabatic capillary tubes.The resolution approach is based on a two-phase flow model where the fluid domain is discretized in a one-dimensional way, and the governing equations it allows the simulation of the two typical geometric arrangements found in capillary-tube/suction-line heat exchangers (i.e. concentric and lateral). On the other hand, it has an enhanced capability to address the convergence difficulties found in distributed models at the near-saturation zone. This document presents the major numerical adaptations done to the model, a comprehensive validation of the two geometric configurations, the model performance when tackling the aforementioned numerical difficulties and finally, some numerical studies.
The simulation of HVAC systems is a powerful tool to improve the energy efficiency in buildings. The modelling of such systems faces several obstacles due to both the physical phenomenology present and the numerical resolution difficulties. The present work is an attempt to develop a robust, fast, and accurate model for HVAC systems that can interact with the other relevant systems involved in buildings thermal management. The whole system model has been developed in the form of libraries under the Modelica language to exploit its advantageous characteristics: object-oriented programming, equationbased modelling, and handling of multi-physics. The global resolution is carried out dynamically so that not only steady-state predictions can be conducted but also control strategies can be studied over meaningful periods of time. This latter aspect is crucial for optimizing energy savings. The libraries include models for all the system individual components such as pumps, compressors or heat exchangers (operating with twophase flows and/or moist air) and also models assemblies to account for vapour compression units and liquid circuits. An illustrative example of an indirect air conditioning system is detailed in the present work in order to highlight the model potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.