Abstract-This work deals with the behavior of a patch antenna equipped with squared electromagnetic bandgap (EBG) structures and subjected to various mechanical deformations (twisting and bending deformations). The EBG structures have a stop band frequency (rejection) feature, allowing the coupling and the undesired electromagnetic interferences to be reduced. The influences of the deformations on the mutual coupling and radiation patterns of an antenna equipped of those EBG elements are experimentally studied.
This work is focused on the prediction of the impact of microstrip radiative antenna distortions on electromagnetic fields. In this way, a recent numerical tool, able to model the electromagnetic and mechanical behavior of a microstrip antenna, has been developed. Considering a weak coupling between electromagnetism and mechanical behavior, the mechanical equations are first solved. Then, from the mechanical strains results for the antenna, the electromagnetic fields are computed. To solve both problems, a 3D hexahedral finite element is used to discretize the structure, having both nodal mechanical and edges electromagnetic degrees of freedom. The weak electromagnetic formulation inducing integrals on an open infinite domain, a Boundary Integral Method (BIM) is used and applied to the strained structure. Three examples are considered. The simulations show that mechanical distortions can have major influence on the electromagnetic behavior of antennas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.