Abstract-The analysis of the electrocardiogram (ECG) is widely used for diagnosing many cardiac diseases. Since most of the clinically useful information in the ECG is found in characteristic wave peaks and boundaries, a significant amount of research effort has been devoted to the development of accurate and robust algorithms for automatic detection of the major ECG characteristic waves (i.e., the QRS complex, P and T waves), socalled ECG wave delineation.One of the most salient ECG wave delineation algorithms is based on the wavelet transform (WT). This work is dedicated to the sensible optimization and porting of this WT-based ECG wave delineator to an actual wearable embedded sensor platform with limited processing and storage resources. The porting was successful and the implementation was extensively validated using a standard manually annotated database. Interestingly, our results show that, despite the limitations of the embedded sensor platform, careful optimization allows to achieve comparable or even better delineation results than the original offline algorithm.
The mechanical properties of the microenvironment play a large role in influencing cellular behavior. In particular, the tradeoff between substrate viscosity and elasticity on collective cell migration by adherent cells is highly physiologically relevant, but remains poorly understood. To investigate the specific effects of viscous substrates, we plated epithelial monolayers onto polydimethylsiloxane substrata with a range of viscosities and elasticities. We found that on viscoelastic substrates the monolayers underwent rapid and coordinated movement to generate cell-free areas. To understand the molecular mechanism of this coordinated movement, we imaged various structural and signaling proteins at cell-cell and cell-matrix junctions. Through quantitative image analysis of monolayer disruption and subcellular protein redistribution, we show that the mechanosensor protein, vinculin, is necessary and sufficient for this viscous response, during which it is lost from focal adhesions and recruited by the cadherin complex to intercellular junctions. In addition, the viscous response is dependent upon and enhanced by actomyosin contractility. Our results implicate vinculin translocation in a molecular switching mechanism that senses substrate viscoelasticity and associates with actomyosin contractility.
Abstract-Multiprocessor System-on-Chip (MPSoC) platforms have become increasingly popular for high-performance embedded applications. Each processing element (PE) on such platforms can be tuned to match the computational demands of the tasks executing on it, creating a heterogeneous multiprocessor system. Extensible processor cores, where the base instruction-set architecture can be augmented with application-specific custom instructions, have recently emerged as flexible building blocks for heterogeneous MPSoC platforms. However, the customization of the different PEs has to be carried out in a synergistic manner so as to create an optimal system. In this work, we propose a pseudopolynomial time algorithm to design the most resource-efficient customized MPSoC platform for mapping linear task graphs representing streaming applications, under deadline constraints. Experimental validation with MP3 encoder and MPEG-2 encoder applications confirms the efficiency of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.