Predicting dynamo self-generation in liquid metal experiments has been an ongoing question for many years. In contrast to simple dynamical systems for which reliable techniques have been developed, the ability to predict the dynamo capacity of a flow and the estimate of the corresponding critical value of the magnetic Reynolds number (the control parameter of the instability) has been elusive, partly due to the high level of turbulent fluctuations of flows in such experiments (with kinetic Reynolds numbers in excess of 10(6)). We address these issues here, using the von Kármán sodium experiment and studying its response to an externally applied magnetic field. We first show that a dynamo threshold can be estimated from analysis related to critical slowing down and susceptibility divergence, in configurations for which dynamo action is indeed observed. These approaches are then applied to flow configurations that have failed to self-generate magnetic fields within operational limits, and we quantify the dynamo capacity of these configurations.
We study different types of stationary dynamos observed in the Von Kármán sodium (VKS) experiment when varying the electromagnetic boundary conditions on (and in) the impellers. The flow is driven with two impellers made of soft iron (Monchaux et al 2007 Phys Rev. Lett. 98 044502) or using one soft-iron impeller and one stainless steel impeller. The magnetic field is mapped using 40 three-dimensional probes distributed within the flow and its surroundings. Symmetry and coupling properties are then retrieved from direct probe measurements and/or from the field structure as reconstructed using the inversion procedure described by Boisson and Dubrulle (2011 New J. Phys. 13 023037). Several salient results are obtained: (i) dynamo action is not achieved unless at least one iron impeller is rotating, at a frequency larger than 15 Hz; (ii) the resulting dynamo is a dipolar, mostly axisymmetric structure; and (iii) the self-sustained magnetic field properties depend on the sodium flow structure between the two impellers. We propose to interpret the stationary dynamos generation as the (constructive or destructive) superposition of two 6
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.