Plant and animals have evolved different strategies for their development. Whether this is linked to major differences in their cell mechanics remains unclear, mainly because measurements on plant and animal cells relied on independent experiments and setups, thus hindering any direct comparison. In this study we used the same micro-rheometer to compare animal and plant single cell rheology. We found that wall-less plant cells exhibit the same weak power law rheology as animal cells, with comparable values of elastic and loss moduli. Remarkably, microtubules primarily contributed to the rheological behavior of wall-less plant cells whereas rheology of animal cells was mainly dependent on the actin network. Thus, plant and animal cells evolved different molecular strategies to reach a comparable cytoplasmic mechanical core, suggesting that evolutionary convergence could include the internal biophysical properties of cells.
A model for acoustic transmission through a 2D square crystal of R-radius bubbles with a lattice constant L was previously proposed. Assuming a purely monopole response of the bubbles, this model offers a simple analytical expression of the transmission. However, it is not applicable when the bubbles are too close to each other ( L / R < 5). This article proposes an extension of the model by including the dipole response of the bubbles. Comparisons with numerical and experimental results show that the new expression gives a good estimate of the concentration at which the monopole model is no longer valid, but fails at properly predicting the transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.