The construction of hierarchical materials through controlled self-assembly of molecular building blocks (e.g., dendrimers) represents a unique opportunity to generate functional nanodevices in a convenient way. Transition-metal compounds are known to be able to interact with cationic dendrimers to generate diverse supramolecular structures, such as nanofibers, with interesting collective properties. In this work, molecular dynamics simulation (MD) demonstrates that acetate ions from dissociated Cd(CH(3)COO)(2) selectively generate cationic PPI-dendrimer functional fibers through hydrophobic modification of the dendrimer's surface. The hydrophobic aggregation of dendrimers is triggered by the asymmetric nature of the acetate anions (AcO(-)) rather than by the precise transition metal (Cd). The assembling directionality is also controlled by the concentration of AcO(-) ions in solution. Atomic force (AFM) and transmission electron microscopy (TEM) prove these results. This well-defined directional assembly of cationic dendrimers is absent for different cadmium derivatives (i.e., CdCl(2), CdSO(4)) with symmetric anions. Moreover, since the formation of these nanofibers is controlled exclusively by selected anions, fiber disassembly can be consequently triggered via simple ionic competition by NaCl salt. Ions are here reported as a simple and cost-effective tool to drive and control actively the assembly and the disassembly of such functional nanomaterials based on dendrimers.
A simple concept is proposed to metallise polyamide 66 (PA66) spherulite structures with in situ synthesised gold nanoparticles (Au NPs) using a wet chemical method. This cost-effective approach, applied to produce a PA66/Au NP hybrid material, offers the advantages of controlling the nanoparticle size, the size distribution and the organic-inorganic interactions. These are the key factors that have to be controlled to construct consistent Au nanostructures which are essential for producing the catalytic activities of interest. The hybrid materials obtained are characterised by means of scanning electron microscopy, transmission electron microscopy, attenuated total reflection-Fourier transform infrared spectrometry and X-ray diffraction spectrometry. The results show that PA66 microspheres obtained via the crystallisation process are coated with Au NPs of 13 nm in size. It was found that controlling the metal coordination is the key parameter to template the Au NPs on the spherulite surfaces. The preparation processes and the key factors leading to the formation of PA66 spherulites coated with Au NPs are discussed. Moreover, the efficiency of the coated spherulites as a potential catalyst is proved by demonstrating the reduction of methylene blue via UV-visible spectrometry.
The grafting of [Mo(^N)(NR 2 )(OR) 2 (pyr)] (R ¼ SiMe 3 , pyr ¼ pyridine) onto highly dehydroxylated silica proceeds to the formation of well-defined silica-supported species. Whereas the molecular precursor is inactive towards alkyne metathesis, its immobilized counterpart displays high activity, which can be significantly enhanced by the addition of 2 equivalents of B(C 6 F 5 ) 3 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.