Social recognition memory (SRM) is crucial for reproduction, forming social groups, and species survival. Despite its importance, SRM is still relatively little studied. Here we examine the participation of the CA1 region of the dorsal hippocampus (CA1) and the basolateral amygdala (BLA) and that of dopaminergic, noradrenergic, and histaminergic systems in both structures in the consolidation of SRM. Male Wistar rats received intra-CA1 or intra-BLA infusions of different drugs immediately after the sample phase of a social discrimination task and 24-h later were subjected to a 5-min retention test. Animals treated with the protein synthesis inhibitor, anisomycin, into either the CA1 or BLA were unable to recognize the previously exposed juvenile (familiar) during the retention test. When infused into the CA1, the β-adrenoreceptor agonist, isoproterenol, the D1/D5 dopaminergic receptor antagonist, SCH23390, and the H2 histaminergic receptor antagonist, ranitidine, also hindered the recognition of the familiar juvenile 24-h later. The latter drug effects were more intense in the CA1 than in the BLA. When infused into the BLA, the β-adrenoreceptor antagonist, timolol, the D1/D5 dopamine receptor agonist, SKF38393, and the H2 histaminergic receptor agonist, ranitidine, also hindered recognition of the familiar juvenile 24-h later. In all cases, the impairment to recognize the familiar juvenile was abolished by the coinfusion of agonist plus antagonist. Clearly, both the CA1 and BLA, probably in that order, play major roles in the consolidation of SRM, but these roles are different in each structure vis-à-vis the involvement of the β-noradrenergic, D1/D5-dopaminergic, and H2-histaminergic receptors therein.social memory | basolateral amygdala | hippocampus | norepinephrine | dopamine
We present an extension of the Individual Brain Charting dataset –a high spatial-resolution, multi-task, functional Magnetic Resonance Imaging dataset, intended to support the investigation on the functional principles governing cognition in the human brain. The concomitant data acquisition from the same 12 participants, in the same environment, allows to obtain in the long run finer cognitive topographies, free from inter-subject and inter-site variability. This second release provides more data from psychological domains present in the first release, and also yields data featuring new ones. It includes tasks on e.g. mental time travel, reward, theory-of-mind, pain, numerosity, self-reference effect and speech recognition. In total, 13 tasks with 86 contrasts were added to the dataset and 63 new components were included in the cognitive description of the ensuing contrasts. As the dataset becomes larger, the collection of the corresponding topographies becomes more comprehensive, leading to better brain-atlasing frameworks. This dataset is an open-access facility; raw data and derivatives are publicly available in neuroimaging repositories.
Deciding about courses of action involves minimizing costs and maximizing benefits. Decision neuroscience studies have implicated both the ventral and dorsal medial prefrontal cortex (vmPFC and dmPFC) in signaling goal value and action cost, but the precise functional role of these regions is still a matter of debate. Here, we suggest a more general functional partition that applies not only to decisions but also to judgments about goal value (expected reward) and action cost (expected effort). In this conceptual framework, cognitive representations related to options (reward value and effort cost) are dissociated from metacognitive representations (confidence and deliberation) related to solving the task (providing a judgment or making a choice). We used an original approach aiming at identifying consistencies across several preference tasks, from likeability ratings to binary decisions involving both attribute integration and option comparison. fMRI results in human male and female participants confirmed the vmPFC as a generic valuation system, its activity increasing with reward value and decreasing with effort cost. In contrast, more dorsal regions were not concerned with the valuation of options but with metacognitive variables, confidence being reflected in mPFC activity and deliberation time in dmPFC activity. Thus, there was a dissociation between the effort attached to choice options (represented in the vmPFC) and the effort invested in deliberation (represented in the dmPFC), the latter being expressed in pupil dilation. More generally, assessing commonalities across preference tasks might help reaching a unified view of the neural mechanisms underlying the cost/benefit tradeoffs that drive human behavior. Significance statementDecision neuroscience studies have implicated the medial prefrontal cortex in forming the cognitive representations that drive human choice behavior. However, different studies using different tasks have suggested somewhat inconsistent links between precise computational variables and specific brain regions. Here, we use fMRI to demonstrate a robust functional partition of the medial PFC that generalizes across tasks involving an estimation of goal value and/or action cost to provide a judgement or make a choice. This general functional partition makes a critical dissociation between neural representations of decisional factors (the expected costs and benefits attached to a given option) and metacognitive estimates (confidence in the judgment or choice, and effort invested in the deliberation process).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.