Background: Gene expression is regulated by DNA elements that often lie far apart along genomic sequences. Results: Novel computations and experiments provide new structural insights into long-range communication on chromatin. Conclusion: Efficient long-range association of transcriptional elements requires intact tails on the core histones. Significance: The understanding of action-at-a-distance in three dimensions helps to connect nucleosome structure/positioning to chromatin dynamics and gene regulation.
We study the mechanical response of elastic rods bent into open knots, focusing on the case of trefoil and cinquefoil topologies. The limit of a weak applied tensile force is studied both analytically and experimentally: the Kirchhoff equations with self-contact are solved by means of matched asymptotic expansions; predictions on both the geometrical and mechanical properties of the elastic equilibrium are compared to experiments. The extension of the theory to tight knots is discussed.
We present a numerical model for the dynamics of thin viscous threads based on a discrete, Lagrangian formulation of the smooth equations. The model makes use of a condensed set of coordinates, called the centerline/spin representation: the kinematical constraints linking the centerline's tangent to the orientation of the material frame is used to eliminate two out of three degrees of freedom associated with rotations. Based on a description of twist inspired from discrete differential geometry and from variational principles, we build a full-fledged discrete viscous thread model, which includes in particular a discrete representation of the internal viscous stress. Consistency of the discrete model with the classical, smooth equations is established formally in the limit of a vanishing discretization length. The discrete models lends itself naturally to numerical implementation. Our numerical method is validated against reference solutions for steady coiling. The method makes it possible to simulate the unsteady behavior of thin viscous jets in a robust and efficient way, including the combined effects of inertia, stretching, bending, twisting, large rotations and surface tension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.