Background Anticoagulation therapy with heparin is a frequent treatment in intensive care units and is monitored by activated partial thromboplastin clotting time (aPTT). It has been demonstrated that reaching an established anticoagulation target within 24 hours is associated with favorable outcomes. However, patients respond to heparin differently and reaching the anticoagulation target can be challenging. Machine learning algorithms may potentially support clinicians with improved dosing recommendations. Objective This study evaluates a range of machine learning algorithms on their capability of predicting the patients’ response to heparin treatment. In this analysis, we apply, for the first time, a model that considers time series. Methods We extracted patient demographics, laboratory values, dialysis and extracorporeal membrane oxygenation treatments, and scores from the hospital information system. We predicted the numerical values of aPTT laboratory values 24 hours after continuous heparin infusion and evaluated 7 different machine learning models. The best-performing model was compared to recently published models on a classification task. We considered all data before and within the first 12 hours of continuous heparin infusion as features and predicted the aPTT value after 24 hours. Results The distribution of aPTT in our cohort of 5926 hospital admissions was highly skewed. Most patients showed aPTT values below 75 s, while some outliers showed much higher aPTT values. A recurrent neural network that consumes a time series of features showed the highest performance on the test set. Conclusions A recurrent neural network that uses time series of features instead of only static and aggregated features showed the highest performance in predicting aPTT after heparin treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.