T he Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission landed on Mars on 26 November 2018 in Elysium Planitia 1,2 , 38 years after the end of Viking 2 lander operations. At the time, Viking's seismometer 3 did not succeed in making any convincing Marsquake detections, due to its on-deck installation and high wind sensitivity. InSight therefore provides the first direct geophysical in situ investigations of Mars's interior structure by seismology 1,4. The Seismic Experiment for Interior Structure (SEIS) 5 monitors the ground acceleration with six axes: three Very Broad Band (VBB) oblique axes, sensitive to frequencies from tidal up to 10 Hz, and one vertical and two horizontal Short Period (SP) axes, covering frequencies from ~0.1 Hz to 50 Hz. SEIS is complemented by the APSS experiment 6 (InSight Auxiliary Payload Sensor Suite), which includes pressure and TWINS (Temperature and Winds for InSight) sensors and a magnetometer. These sensors monitor the atmospheric sources of seismic noise and signals 7. After seven sols (Martian days) of SP on-deck operation, with seismic noise comparable to that of Viking 3 , InSight's robotic arm 8 placed SEIS on the ground 22 sols after landing, at a location selected through analysis of InSight's imaging data 9. After levelling and noise assessment, the Wind and Thermal Shield was deployed on sol 66 (2 February 2019). A few days later, all six axes started continuous seismic recording, at 20 samples per second (sps) for VBBs and 100 sps for SPs. After onboard decimation, continuous records at rates from 2 to 20 sps and event records 5 at 100 sps are transmitted. Several layers of thermal protection and very low self-noise enable the SEIS VBB sensors to record the daily variation of the
A planet’s crust bears witness to the history of planetary formation and evolution, but for Mars, no absolute measurement of crustal thickness has been available. Here, we determine the structure of the crust beneath the InSight landing site on Mars using both marsquake recordings and the ambient wavefield. By analyzing seismic phases that are reflected and converted at subsurface interfaces, we find that the observations are consistent with models with at least two and possibly three interfaces. If the second interface is the boundary of the crust, the thickness is 20 ± 5 kilometers, whereas if the third interface is the boundary, the thickness is 39 ± 8 kilometers. Global maps of gravity and topography allow extrapolation of this point measurement to the whole planet, showing that the average thickness of the martian crust lies between 24 and 72 kilometers. Independent bulk composition and geodynamic constraints show that the thicker model is consistent with the abundances of crustal heat-producing elements observed for the shallow surface, whereas the thinner model requires greater concentration at depth.
Measurements of ground compliance at the InSight landing site—describing the surface response to pressure loading—are obtained from seismic and meteorological data. Compliance observations show an increase with frequency indicating the presence of a stiffer rock layer beneath the exposed regolith. We performed a Markov chain Monte Carlo inversion to investigate the vertical profile of the elastic parameters down to 20 m below InSight. Compliance was inverted both freely and assuming prior knowledge of compaction in the regolith, and the limitations and strengths of the methods were assessed on the basis of theoretical considerations and synthetic tests. The inverted Young modulus exhibits an increase by a factor of 10–100 over the first 10–15 m, compatible with a structural discontinuity between 0.7 and 7 m. The proposed scheme can be used for joint inversion of other seismic, geological, or mechanical constraints to refine the resulting vertical section.
The instrument package SEIS (Seismic Experiment for Internal Structure) with the three very broadband and three short-period seismic sensors is installed on the surface on Mars as part of NASA's InSight Discovery mission. When compared to terrestrial installations, SEIS is deployed in a very harsh wind and temperature environment that leads to inevitable degradation of the quality of the recorded data. One ubiquitous artifact in the raw data is an abundance of transient one-sided pulses often accompanied by high-frequency spikes. These pulses, which we term "glitches", can be modeled as the response of the instrument to a step in acceleration, while the spikes can be modeled as the response to a simultaneous step in displacement. We attribute the glitches primarily to SEIS-internal stress relaxations caused by the large temperature variations to which the instrument is exposed during a Martian day. Only a small fraction of glitches correspond to a motion of the SEIS package as a whole caused by minuscule tilts of either the instrument or the ground. In this study, we focus on the analysis of the glitch+spike phenomenon and present how these signals can be automatically detected and removed from SEIS's raw data. As glitches affect many standard seismological analysis methods such as receiver functions, spectral decomposition and source inversions, we anticipate that studies of the Martian seismicity as well as studies of Mars' internal structure should benefit from deglitched seismic data. Plain Language Summary The instrument package SEIS (Seismic Experiment for Internal Structure) with two fully equipped seismometers is installed on the surface of Mars as part of NASA's InSight Discovery mission. When compared to terrestrial installations, SEIS is more exposed to wind and daily temperature changes that leads to inevitable degradation of the quality of the recorded data. One consequence is the occurrence of a specific type of transient noise that we term "glitch". Glitches show up in the recorded data as one-sided pulses and have strong implications for the typical seismic data analysis. Glitches can be understood as step-like changes in the acceleration sensed by the seismometers. We attribute them primarily to SEIS-internal stress relaxations caused by the large temperature variations to which the instrument is exposed during a Martian day. Only a small fraction of glitches correspond to a motion of the whole SEIS instrument. In this study, we focus on the detection and removal of glitches and anticipate
Mars atmospheric pressure variations induce ground displacements through elastic deformations. The various sensors of the InSight mission were designed in order to be able to understand and correct for these ground deformations induced by atmospheric effects. Particular efforts were made, on one hand, to avoid direct pressure and wind effects on the seismometer and, on the other hand, to have a high performance pressure sensor operating in the same frequency range as the seismometer. As a consequence of these technical achievements and the low background seismic noise of Mars, the InSight mission is opening a new science domain in which the ground displacements can be used to perform atmospheric science. This study presents an analysis of pressure and seismic signals and the relations between them. After a short description of the pressure and seismic sensors, we present an analysis of these signals as a function of local time at the InSight location. Then the coherent signals recorded by both pressure and seismic sensors are described and interpreted in terms of atmospheric signals and ground deformation processes. Two different methods to remove the pressure effects recorded by SEIS sensors are presented, and their efficiency is estimated and compared. These decorrelation methods allow the pressure generated noise to be reduced by a factor of 2 during the active day time period. Finally, an analysis of SEIS signals induced by gravity waves demonstrates the interest of ground displacement measurements to characterize their arrival azimuth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.