Quantification of reed coverage and vegetation status is fundamental for monitoring and developing lake conservation strategies. The applicability of Unmanned Aerial Vehicles (UAV) three-dimensional data (point clouds) for status evaluation was investigated. This study focused on mapping extent, density, and vegetation status of aquatic reed beds. Point clouds were calculated with Structure from Motion (SfM) algorithms in aerial imagery recorded with Rotary Wing (RW) and Fixed Wing (FW) UAV. Extent was quantified by measuring the surface between frontline and shoreline. Density classification was based on point geometry (height and height variance) in point clouds. Spectral information per point was used for calculating a vegetation index and was used as indicator for vegetation vitality. Status was achieved by combining data on density, vitality, and frontline shape outputs. Field observations in areas of interest (AOI) and optical imagery were used for reference and validation purposes. A root mean square error (RMSE) of 1.58 m to 3.62 m for cross sections from field measurements and classification was achieved for extent map. The overall accuracy (OA) acquired for density classification was 88.6% (Kappa = 0.8). The OA for status classification of 83.3% (Kappa = 0.7) was reached by comparison with field measurements complemented by secondary Red, Green, Blue (RGB) data visual assessments. The research shows that complex transitional zones (water–vegetation–land) can be assessed and support the suitability of the applied method providing new strategies for monitoring aquatic reed bed using low-cost UAV imagery.
Abstract:Aquatic reed is an important indicator for the ecological assessment of freshwater lakes. Monitoring is essential to document its expansion or deterioration and decline. The applicability of Green-LiDAR data for the status assessment of aquatic reed beds of Bavarian freshwater lakes was investigated. The study focused on mapping diagnostic structural parameters of aquatic reed beds by exploring 3D data provided by the Green-LiDAR system. Field observations were conducted over 14 different areas of interest along 152 cross-sections. The data indicated the morphologic and phenologic traits of aquatic reed, which were used for validation purposes. For the automatic classification of aquatic reed bed spatial extent, density and height, a rule-based algorithm was developed. LiDAR data allowed for the delimitating of the aquatic reed frontline, as well as shoreline, and therefore an accurate quantification of extents (Hausdorff distance = 5.74 m and RMSE of cross-sections length 0.69 m). The overall accuracy measured for aquatic reed bed density compared to the simultaneously recorded aerial imagery was 96% with a Kappa coefficient of 0.91 and 72% (Kappa = 0.5) compared to field measurements. Digital Surface Models (DSM), calculated from point clouds, similarly showed a high level of agreement in derived heights of flat surfaces (RMSE = 0.1 m) and showed an adequate agreement of aquatic reed heights with evenly distributed errors (RMSE = 0.8 m). Compared to field measurements, aerial laser scanning delivered valuable information with no disturbance of the habitat. Analysing data with our classification procedure improved the efficiency, reproducibility, and accuracy of the quantification and monitoring of aquatic reed beds.
Aquatic reed beds provide important ecological functions, yet their monitoring by remote sensing methods remains challenging. In this study, we propose an approach of assessing aquatic reed stand status indicators based on data from the airborne photogrammetric 3K-system of the German Aerospace Center (DLR). By a Structure from Motion (SfM) approach, we computed stand surface models of aquatic reeds for each of the 14 areas of interest (AOI) investigated at Lake Chiemsee in Bavaria, Germany. Based on reed heights, we subsequently calculated the reed area, surface structure homogeneity and shape of the frontline. For verification, we compared 3K aquatic reed heights against reed stem metrics obtained from ground-based infield data collected at each AOI. The root mean square error (RMSE) for 1358 reference points from the 3K digital surface model and the field-measured data ranged between 39 cm and 104 cm depending on the AOI. Considering strong object movements due to wind and waves, superimposed by water surface effects such as sun glint altering 3K data, the results of the aquatic reed surface reconstruction were promising. Combining the parameter height, area, density and frontline shape, we finally calculated an indicator for status determination: the aquatic reed status index (aRSI), which is based on metrics, and thus is repeatable and transferable in space and time. The findings of our study illustrate that, even under the adverse conditions given by the environment of the aquatic reed, aerial photogrammetry can deliver appropriate results for deriving objective and reconstructable parameters for aquatic reed status (Phragmites australis) assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.