a b s t r a c tCracking is observed when a UO 2 single crystal is oxidised in air. Previous studies led to the hypothesis that cracking occurs once a critical depth of U 3 O 7 oxidised layer is reached. We present some l-Laue Xray diffraction results, which evidence that the U 3 O 7 layer, grown by topotaxy on UO 2 , is made of domains with different crystalline orientations. This observation was used to perform a modelling of oxidation coupling chemical and mechanical parameters, which showed that the domain patterning induces stress localisation. This result is discussed in comparison with stress localisation observed in thin layer deposited on a substrate and used to propose an interpretation of UO 2 oxidation and cracking.
Novel porous bionanocomposites based on halloysite nanotubes as nanofillers and plasticized starch as polymeric matrix were successfully prepared by melt-extrusion. Foaming was obtained by adding water as natural blowing agent, and by increasing the die temperature. Both the expansion ratio and the porosity increase with increasing die temperature. Addition of high water content allows reducing the foaming temperature. Moreover, the introduction of halloysite has double benefits: these fillers act both as a nucleating agent increasing the porosity and as a barrier agent increasing the proportion of small cells. Foams based on plasticized starch with a blend of glycerol and sorbitol loaded with 6 wt % of halloysite, extruded at 117 C, present the cellular structure and the mechanical properties required for scaffold applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.