This paper deals with the thermal modeling of a large prismatic Li-ion battery (LiFePO 4 /graphite). A lumped model representing the main thermal phenomena in the cell, in and outside the casing, is hereby proposed. Most of the parameters are determined analytically using physical and geometrical properties. The heat capacity, the internal and the interfacial thermal resistances between the battery and its cooling system are experimentally identified. On the other hand, the heat sources modeling is considered to be one of the most difficult task. In order to overcome this problem, a heat generation model is included. More specifically, the electrical losses are computed thanks to an electrical model which is represented by an equivalent electric circuit. A method is also proposed for parameter determination which is based on a quasi-steady state assumption. It also takes into account the battery heating during characterization which is the temperature variation due to heat generation during current pulses. This temperature variation is estimated thanks to the coupled thermal and heat generation models. The electrical parameters are determined as function of state of charge (SoC), temperature and current. Finally, the proposed coupled models are experimentally validated with a precision of 1°C.
The entropy-variation of a battery is responsible for heat generation or consumption during operation and its prior measurement is mandatory for developing a thermal model. It is generally done through the potentiometric method which is considered as a reference. However, it requires several days or weeks to get a look-up table with a 5 or 10 % SoC (State of Charge) resolution. In this study, a calorimetric method based on the inversion of a thermal model is proposed for the fast estimation of a nearly continuous curve of entropy-variation. This is achieved by separating the heats produced while charging and discharging the battery. The entropy-variation is then deduced from the extracted entropic heat. The proposed method is validated by comparing the results obtained with several current rates to measurements made with the potentiometric method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.