Aim Primary forests have high conservation value but are rare in Europe due to historic land use. Yet many primary forest patches remain unmapped, and it is unclear to what extent they are effectively protected. Our aim was to (1) compile the most comprehensive European‐scale map of currently known primary forests, (2) analyse the spatial determinants characterizing their location and (3) locate areas where so far unmapped primary forests likely occur. Location Europe. Methods We aggregated data from a literature review, online questionnaires and 32 datasets of primary forests. We used boosted regression trees to explore which biophysical, socio‐economic and forest‐related variables explain the current distribution of primary forests. Finally, we predicted and mapped the relative likelihood of primary forest occurrence at a 1‐km resolution across Europe. Results Data on primary forests were frequently incomplete or inconsistent among countries. Known primary forests covered 1.4 Mha in 32 countries (0.7% of Europe’s forest area). Most of these forests were protected (89%), but only 46% of them strictly. Primary forests mostly occurred in mountain and boreal areas and were unevenly distributed across countries, biogeographical regions and forest types. Unmapped primary forests likely occur in the least accessible and populated areas, where forests cover a greater share of land, but wood demand historically has been low. Main conclusions Despite their outstanding conservation value, primary forests are rare and their current distribution is the result of centuries of land use and forest management. The conservation outlook for primary forests is uncertain as many are not strictly protected and most are small and fragmented, making them prone to extinction debt and human disturbance. Predicting where unmapped primary forests likely occur could guide conservation efforts, especially in Eastern Europe where large areas of primary forest still exist but are being lost at an alarming pace.
National and international forest biodiversity assessments largely rely on indirect indicators, based on elements of forest structure that are used as surrogates for species diversity. These proxies are reputedly easier and cheaper to assess than biodiversity. Tree microhabitats—tree‐borne singularities such as cavities, conks of fungi or bark characteristics—have gained attention as potential forest biodiversity indicators. However, as with most biodiversity indicators, there is a lack of scientific evidence documenting their quantitative link with the biodiversity they are supposed to assess. We explored the link between microhabitat indices and the richness and abundance of three taxonomic groups: bats, birds and saproxylic beetles. Using a nation‐wide multi‐taxon sampling design in France, we compared 213 plots located inside and outside strict forest reserves. We hypothesized that the positive effect setting aside forest reserves has on biodiversity conservation is indirectly due to an increase in the proportion of large structural elements (e.g., living trees, standing and lying deadwood). These, in turn, are likely to favour the quantity and diversity of microhabitats. We analysed the relationship between the abundance and species richness of different groups and guilds (e.g., red‐listed species, forest specialists, cavity dwellers) and microhabitat density and diversity. We then used confirmatory structural equation models to assess the direct and indirect effects of management abandonment, large structural elements and microhabitats on the biodiversity of the target species. For several groups of birds and bats, the indirect effect of management abandonment and large structural elements on biodiversity was mediated by microhabitats. However, the magnitude of the link between microhabitat indices and biodiversity was moderate. In particular, saproxylic beetles’ biodiversity was poorly explained by microhabitats, large structural elements or management abandonment. Synthesis and applications. Tree microhabitats may serve as indicators for bats and birds, but they are not a universal biodiversity indicator. Rather, compared to large structural elements, they most likely have a complementary role to biodiversity. In terms of forest management and conservation, preserving diversity of microhabitats at the local scale benefits several groups of both bats and birds.
Aims Primary forests are critical for forest biodiversity and provide key ecosystem services. In Europe, these forests are particularly scarce and it is unclear whether they are sufficiently protected. Here we aim to: (a) understand whether extant primary forests are representative of the range of naturally occurring forest types, (b) identify forest types which host enough primary forest under strict protection to meet conservation targets and (c) highlight areas where restoration is needed and feasible. Location Europe. Methods We combined a unique geodatabase of primary forests with maps of forest cover, potential natural vegetation, biogeographic regions and protected areas to quantify the proportion of extant primary forest across Europe's forest types and to identify gaps in protection. Using spatial predictions of primary forest locations to account for underreporting of primary forests, we then highlighted areas where restoration could complement protection. Results We found a substantial bias in primary forest distribution across forest types. Of the 54 forest types we assessed, six had no primary forest at all, and in two‐thirds of forest types, less than 1% of forest was primary. Even if generally protected, only ten forest types had more than half of their primary forests strictly protected. Protecting all documented primary forests requires expanding the protected area networks by 1,132 km2 (19,194 km2 when including also predicted primary forests). Encouragingly, large areas of non‐primary forest existed inside protected areas for most types, thus presenting restoration opportunities. Main conclusion Europe's primary forests are in a perilous state, as also acknowledged by EU's “Biodiversity Strategy for 2030.” Yet, there are considerable opportunities for ensuring better protection and restoring primary forest structure, composition and functioning, at least partially. We advocate integrated policy reforms that explicitly account for the irreplaceable nature of primary forests and ramp up protection and restoration efforts alike.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.