Unprecedented growth in human populations has required the intensification of agriculture to enhance crop productivity, but this was achieved at a major cost to biodiversity. There is abundant local‐scale evidence that both pollinator diversity and pollination services decrease with increasing agricultural intensification. This raises concerns regarding food security, as two‐thirds of the world's major food crops are pollinator‐dependent. Whether such local findings scale up and affect crop production over larger scales is still being debated. Here, we analyzed a country‐wide dataset of the 54 major crops in France produced over the past two decades and found that benefits of agricultural intensification decrease with increasing pollinator dependence, to the extent that intensification failed to increase the yield of pollinator‐dependent crops and decreased the stability of their yield over time. This indicates that benefits from agricultural intensification may be offset by reductions in pollination services, and supports the need for an ecological intensification of agriculture through optimization of ecosystem services.
BackgroundIn the past decade, accumulating evidence of pollinator decline has raised concerns regarding the functioning of terrestrial ecosystems and the sustainability of crop production. Although land-use changes have been advanced as the major causes, the affinities of most wild pollinators with the main land-use types remain unknown. Filling this gap in our knowledge is a prerequisite to improving conservation and management programmes.Methodology/Principal FindingsWe estimated the affinity of flower visitors with urban, agricultural and natural land-uses using data from a country-wide scale monitoring scheme based on citizen science (Spipoll). We tested whether the affinities differed among insect orders and according to insect frequency (frequent or infrequent). Our results indicate that the affinities with the three land-use types differed among insect orders. Apart from Hymenopterans, which appeared tolerant to the different land-uses, all flower visitors presented a negative affinity with urban areas and a positive affinity with agricultural and natural areas. Additionally, infrequent taxa displayed a lower affinity with urban areas and a higher affinity with natural areas than did frequent taxa. Within frequent taxa, Hymenoptera and Coleoptera included specialists of the three land-use types whereas Diptera and Lepidoptera contained specialists of all but urban areas.Conclusions/SignificanceOur approach allowed the first standardised evaluation of the affinity of flower visitors with the main land-use types across a broad taxonomical range and a wide geographic scope. Our results suggest that the most detrimental land-use change for flower visitor communities is urbanisation. Moreover, our findings highlight the fact that agricultural areas have the potential to host highly diverse pollinator communities. We suggest that policy makers should, therefore, focus on the implementation of pollinator-friendly practices in agricultural lands. This may be a win-win strategy, as both biodiversity and crop production may benefit from healthier communities of flower visitors in these areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.