BackgroundThe mechanism of action of oral cladribine, recently licensed for relapsing multiple sclerosis, is unknown.ObjectiveTo determine whether cladribine depletes memory B cells consistent with our recent hypothesis that effective, disease-modifying treatments act by physical/functional depletion of memory B cells.MethodsA cross-sectional study examined 40 people with multiple sclerosis at the end of the first cycle of alemtuzumab or injectable cladribine. The relative proportions and absolute numbers of peripheral blood B lymphocyte subsets were measured using flow cytometry. Cell-subtype expression of genes involved in cladribine metabolism was examined from data in public repositories.ResultsCladribine markedly depleted class-switched and unswitched memory B cells to levels comparable with alemtuzumab, but without the associated initial lymphopenia. CD3+ T cell depletion was modest. The mRNA expression of metabolism genes varied between lymphocyte subsets. A high ratio of deoxycytidine kinase to group I cytosolic 5′ nucleotidase expression was present in B cells and was particularly high in mature, memory and notably germinal centre B cells, but not plasma cells.ConclusionsSelective B cell cytotoxicity coupled with slow repopulation kinetics results in long-term, memory B cell depletion by cladribine. These may offer a new target, possibly with potential biomarker activity, for future drug development.Electronic supplementary materialThe online version of this article (10.1007/s00415-018-8830-y) contains supplementary material, which is available to authorized users.
Adiponectin (ApN) is a hormone abundantly secreted by adipocytes and it is known to be tightly linked to the metabolic syndrome. It promotes insulin-sensitizing, fat-burning, and anti-atherosclerotic actions, thereby effectively counteracting several metabolic disorders, including type 2 diabetes, obesity, and cardiovascular diseases. ApN is also known today to possess powerful anti-inflammatory/oxidative and pro-myogenic effects on skeletal muscles exposed to acute or chronic inflammation and injury, mainly through AdipoR1 (ApN specific muscle receptor) and AMP-activated protein kinase (AMPK) pathway, but also via T-cadherin. In this review, we will report all the beneficial and protective properties that ApN can exert, specifically on the skeletal muscle as a target tissue. We will highlight its effects and mechanisms of action, first in healthy skeletal muscle including exercised muscle, and second in diseased muscle from a variety of pathological conditions. In the end, we will go over some of AdipoRs agonists that can be easily produced and administered, and which can greatly mimic ApN. These interesting and newly identified molecules could pave the way towards future therapeutic approaches to potentially prevent or combat not only skeletal muscle disorders but also a plethora of other diseases with sterile inflammation or metabolic dysfunction.
Alemtuzumab is a lymphocyte-depleting antibody and one of the most effective treatments for relapsing multiple sclerosis. However, it also causes loss of immune-tolerance leading to secondary autoimmunity and marked anti-drug antibody responses. Although these anti-drug responses have been reported to be of no significance, we hypothesized that they will affect the depleting capacity and treatment response in some individuals. This was found following analysis of the regulatory submission of the pivotal phase III trials, which was obtained from the European Medicines Agency. At the population level there was lack of influence of 'ever-positive' alemtuzumab-specific antibody responses on lymphocyte depletion, clinical efficacy and adverse effects during the 2-year trial. This was not surprising as no one before the first infusion, and only 0·6% of people before the second-infusion, had pre-infusion, neutralizing antibodies (NAbs). However, at the individual level, NAbs led to poor lymphocyte depletion. Importantly, it was evident that 31% of people had NAbs and 75% had binding antibodies at the end of treatment-cycle 2, which suggests that problems may occur in people requiring additional alemtuzumab cycles. In addition, we also identified individuals, following 'post-marketing' alemtuzumab use, whose lymphocyte level was never effectively depleted after the first infusion cycle. Hence, although alemtuzumab depletes lymphocytes in most individuals, some people fail to deplete/deplete poorly, probably due to biological-response variation and NAbs, and this may lead to treatment failure. Monitoring depletion following infusion and assessment of the neutralizing response before re-infusion may help inform the decision to retreat or switch therapy to limit treatment failure.
We report a case of Takotsubo syndrome after epilepsy, and review the literature. We identified 59 cases of Takotsubo syndrome after focal or generalised epilepsy. As in Takotsubo syndrome in general, the patients were mostly female (84%), with a mean age of 63 years, and the evolution was generally favourable. There was one death and one stroke, and 4 cases were of relapsing Takotsubo after a new seizure. Takotsubo syndrome may induce cardiac arrhythmias. A near-SUDEP (sudden unexplained death in epilepsy) was reported in one patient. Animal models of SUDEP have shown similar cardiac lesions to those seen in Takotsubo syndrome, and strengthen the hypothesis of a link between these conditions. Takotsubo syndrome after epilepsy may be relatively common; we suggest measurement of serum troponin levels in high-risk patients and cardiac follow-up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.