We present a deep photometric survey of the Andromeda galaxy, conducted with the wide-field cameras of CFHT and INT, that covers the inner 50 kpc of the galaxy and the southern quadrant out to $150 kpc and includes an extension to M33 at >200 kpc. This is the first systematic panoramic study of this very outermost region of galaxies. We detect a multitude of large-scale structures of low surface brightness, including several streams, and two new relatively luminous (M V $ À9) dwarf galaxies: And XV and And XVI. Significant variations in stellar populations due to intervening streamYlike structures are detected in the inner halo, which is particularly important in shedding light on the mixed and sometimes conflicting results reported in previous studies. Underlying the many substructures lies a faint, smooth, and extremely extended halo component, reaching out to 150 kpc, whose stellar populations are predominantly metal-poor. We find that the smooth halo component in M31 has a radially decreasing profile that can be fitted with a Hernquist model of immense scale radius $55 kpc, almost 4 times larger than theoretical predictions. Alternatively a power law with AE V / R À1:91AE0:11 can be fitted to the projected profile, similar to the density profile in the Milky Way. If it is symmetric, the total luminosity of this structure is $10 9 L , again similar to the stellar halo of the Milky Way. This vast, smooth, underlying halo is reminiscent of a classical ''monolithic'' model and completely unexpected from modern galaxy formation models. M33 is also found to have an extended metal-poor halo component, which can be fitted with a Hernquist model also of scale radius $55 kpc. These extended slowly decreasing halos will provide a challenge and strong constraints for further modeling.
We derive the structural parameters of the recently discovered very low luminosity Milky Way satellites through a Maximum Likelihood algorithm applied to SDSS data. For each satellite, even when only a few tens of stars are available down to the SDSS flux limit, the algorithm yields robust estimates and errors for the centroid, position angle, ellipticity, exponential half-light radius and number of member stars (within the SDSS). This latter parameter is then used in conjunction with stellar population models of the satellites to derive their absolute magnitudes and stellar masses, accounting for 'color-magnitude diagram shot-noise'. Most parameters are in good agreement with previous determinations but we now properly account for parameter covariances. However, we find that faint satellites are somewhat more elliptical than initially found and ascribe that to the previous use of smoothed maps which can be dominated by the smoothing (round) kernel. As a result, the faintest half of the Milky Way dwarf galaxies (M V ∼ > −7.5) is significantly (4σ) flatter (< ǫ >= 0.47 ± 0.03) than its brightest half (M V ∼ < −7.5, < ǫ >= 0.32 ± 0.02). From our best models, we also investigate whether the seemingly distorted shape of the satellites, often taken to be a sign of tidal distortion, can be quantified. We find that, except for tentative evidence of distortion in Canes Venatici I and Ursa Major II, these can be completely accounted for by Poisson scatter in the sparsely sampled systems. We consider three scenarios that could explain the rather elongated shape of faint satellites: rotation supported systems, stars following the shape of more triaxial dark matter subhalos, or elongation due to tidal interaction with the Milky Way. Although none of these is entirely satisfactory, the last one appears the least problematic, but obviously warrants much deeper observations to track evidence of such tidal interaction.
We present a three-dimensional map of interstellar dust reddening, covering three-quarters of the sky out to a distance of several kiloparsecs, based on Pan-STARRS 1 and 2MASS photometry. The map reveals a wealth of detailed structure, from filaments to large cloud complexes. The map has a hybrid angular resolution, with most of the map at an angular resolution of 3.4 to 13.7 , and a maximum distance resolution of ∼ 25%. The three-dimensional distribution of dust is determined in a fully probabilistic framework, yielding the uncertainty in the reddening distribution along each line of sight, as well as stellar distances, reddenings and classifications for 800 million stars detected by Pan-STARRS 1. We demonstrate the consistency of our reddening estimates with those of two-dimensional emission-based maps of dust reddening. In particular, we find agreement with the Planck τ 353 GHzbased reddening map to within 0.05 mag in E(B −V ) to a depth of 0.5 mag, and explore systematics at reddenings less than E(B −V ) ≈ 0.08 mag. We validate our per-star reddening estimates by comparison with reddening estimates for stars with both SDSS photometry and SEGUE spectral classifications, finding per-star agreement to within 0.1 mag out to a stellar E(B −V ) of 1 mag. We compare our map to two existing three-dimensional dust maps, by Marshall et al. (2006) and Lallement et al. (2013), demonstrating our finer angular resolution, and better distance resolution compared to the former within ∼ 3 kpc. The map can be queried or downloaded at http://argonaut.skymaps.info. We expect the three-dimensional reddening map presented here to find a wide range of uses, among them correcting for reddening and extinction for objects embedded in the plane of the Galaxy, studies of Galactic structure, calibration of future emission-based dust maps and determining distances to objects of known reddening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.