Taking derivatives of numerical functions is one of the most often performed tasks in computation. Finite differences are a standard way to approximate the derivative of a function, and compact finite differences are especially attractive. We study the conditioning of differentiation, including some structured condition numbers for differentiation of polynomials. We look at differentiation matrices for derivatives of polynomials expressed in a Lagrange or Hermite interpolational basis. We look at regularization or smoothing before taking derivatives, and briefly touch on automatic differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.