Ac electrokinetics is concerned with the study of the movement and behaviour of particles in suspension when they are subjected to ac electrical fields. The development of new microfabricated electrode structures has meant that particles down to the size of macromolecules have been manipulated, but on this scale forces other than electrokinetic affect particles behaviour. The high electrical fields, which are required to produce sufficient force to move a particle, result in heat dissipation in the medium. This in turn produces thermal gradients, which may give rise to fluid motion through buoyancy, and electrothermal forces. In this paper, the frequency dependency and magnitude of electrothermally induced fluid flow are discussed. A new type of fluid flow is identified for low frequencies (up to 500 kHz). Our preliminary observations indicate that it has its origin in the action of a tangential electrical field on the diffuse double layer of the microfabricated electrodes. The effects of Brownian motion, diffusion and the buoyancy force are discussed in the context of the controlled manipulation of sub-micrometre particles. The orders of magnitude of the various forces experienced by a sub-micrometre latex particle in a model electrode structure are calculated. The results are compared with experiment and the relative influence of each type of force on the overall behaviour of particles is described.
The movement and behaviour of particles suspended in aqueous solutions subjected to non-uniform ac electric fields is examined. The ac electric fields induce movement of polarizable particles, a phenomenon known as dielectrophoresis. The high strength electric fields that are often used in separation systems can give rise to fluid motion, which in turn results in a viscous drag on the particle. The electric field generates heat, leading to volume forces in the liquid. Gradients in conductivity and permittivity give rise to electrothermal forces and gradients in mass density to buoyancy. In addition, non-uniform ac electric fields produce forces on the induced charges in the diffuse double layer on the electrodes. This causes a steady fluid motion termed ac electro-osmosis. The effects of Brownian motion are also discussed in this context. The orders of magnitude of the various forces experienced by a particle in a model microelectrode system are estimated. The results are discussed in relation to experiments and the relative influence of each type of force is described.
During the AC electrokinetic manipulation of particles in suspension on microelectrode structures, strong frequency-dependent fluid flow is observed. The fluid movement is predominant at frequencies below the reciprocal charge relaxation time, with a reproducible pattern occurring close to and across the electrode surface. This paper reports measurements of the fluid velocity as a function of frequency and position across the electrode. Evidence is presented indicating that the flow occurs due to electroosmotic stress arising from the interaction of the electric field and the electrical double layer on the electrodes. The electrode polarization plays a significant role in controlling the frequency dependence of the flow. © 1999 Academic Press Key Words: electroosmosis; microelectrode; ac electrokinetics; electrohydrodynamics; electrode polarization.Recent work in the field of AC electrokinetics has shown that submicrometer particles can be characterized and manipulated in microelectrode arrays using dielectrophoresis (1-4). Advanced fabrication methods have been used to manufacture complicated electrode structures that can generate precise electric fields up to 10 7 V m Ϫ1 over a wide range of frequencies (2-4). However, the high electric fields give rise to fluid movement, particularly close to the electrode surface. The observation of the dielectrophoretic behavior of submicrometer particles in electrolytes has revealed a reproducible pattern of fluid flow at frequencies below the charge relaxation frequency of the liquid. Measurements show that the velocity of the fluid is frequency dependent, tending to zero at upper and lower frequency limits, and with magnitudes up to 500 m s Ϫ1 . This field-induced fluid flow is likely to be the cause of previously unexplained phenomena in the dielectrophoretic manipulation of particles on microelectrodes (3).We postulate that the driving force for this flow arises from the interaction of the nonuniform electric field with the charge in the diffuse double layer. Other authors have also observed particle motion in microelectrode structures and have related these effects to electrical stresses on the double layer (5, 6). In these references the motion of the particles was attributed to gradients in the conduction current arising due to the collective interaction of the particles or inhomogeneities in the surface conductivity of the microstructures. In this paper we present measurements of fluid motion in AC fields generated in microelectrodes and show the frequency dependent nature of the fluid velocity. A novel mechanism is postulated for the underlying physical origin of the flow, which takes into account the polarization of the electrodes. This could be the origin of previously observed phenomena resulting from the action of AC fields on fluids, in particular, the cessation of fluid motion above 1 MHz (5). We term this mechanism AC electroosmosis.Experimental observations were made on microelectrodes, consisting of two parallel coplanar plates fabricated on planar glass ...
Under the influence of an ac electric field, electrolytes on planar microelectrodes exhibit fluid flow. The nonuniform electric field generated by the electrodes interacts with the suspending fluid through a number of mechanisms, giving rise to body forces and fluid flow. This paper presents the detailed experimental measurements of the velocity of fluid flow on microelectrodes at frequencies below the charge relaxation frequency of the electrolyte. The velocity of latex tracer particles was measured as a function of applied signal frequency and potential, electrolyte conductivity, and position on the electrode surface. The data are discussed in terms of a linear model of ac electroosmosis: the interaction of the nonuniform ac field and the induced electrical double layer.
Submicron particles such as latex spheres and viruses can be manipulated and characterized using dielectrophoresis. By the use of appropriate microelectrode arrays, particles can be trapped or moved between regions of high or low electric fields. The magnitude and direction of the dielectrophoretic force on the particle depends on its dielectric properties, so that a heterogeneous mixture of particles can be separated to produce a more homogeneous population. In this paper the controlled separation of submicron bioparticles is demonstrated. With electrode arrays fabricated using direct write electron beam lithography, it is shown that different types of submicron latex spheres can be spatially separated. The separation occurs as a result of differences in magnitude and/or direction of the dielectrophoretic force on different populations of particles. These differences arise mainly because the surface properties of submicron particles dominate their dielectrophoretic behavior. It is also demonstrated that tobacco mosaic virus and herpes simplex virus can be manipulated and spatially separated in a microelectrode array.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.