Low-density neutrophils (LDNs) are a subset of neutrophils first described in the bloodstream upon pathological conditions, and recently, in the blood of healthy humans. LDNs may have an enhanced pro-inflammatory (low-density granulocytes, LDGs) or an immunosuppressive (Granulocytic myeloid-derived suppressor cells, G-MDSCs) profile. Whether these characteristics are specific to LDNs or related to disease states is unknown. Thus, we sought to investigate the properties of LDNs in both health and disease states, and to compare them to those of autologous normal-density neutrophils (NDNs). We studied 8 horses with severe equine asthma and 11 healthy animals. LDNs were smaller and contained more N-formylmethionine-leucyl-phenylalanine receptors than NDNs, but the myeloperoxidase content was similar in both cell populations. They also had an increased capacity to produce neutrophil extracellular traps, and were more sensitive to activation by phorbol-12-myristate-13-acetate. This profile is suggestive of LDGs. These characteristics were similar in both healthy and diseased animals, indicating that these are intrinsic properties of LDNs. Furthermore, these results suggest that LDNs represent a population of primed and predominantly mature cells. This study is the first to characterize LDNs in health, and to compare their properties with those of NDNs and of animals with a naturally occurring disease.
Electrical impedance tomography (EIT) is a non-invasive real-time non-ionising imaging modality that has many applications. Since the first recorded use in 1978, the technology has become more widely used especially in human adult and neonatal critical care monitoring. Recently, there has been an increase in research on thoracic EIT in veterinary medicine. Real-time imaging of the thorax allows evaluation of ventilation distribution in anesthetised and conscious animals. As the technology becomes recognised in the veterinary community there is a need to standardize approaches to data collection, analysis, interpretation and nomenclature, ensuring comparison and repeatability between researchers and studies. A group of nineteen veterinarians and two biomedical engineers experienced in veterinary EIT were consulted and contributed to the preparation of this statement. The aim of this consensus is to provide an introduction to this imaging modality, to highlight clinical relevance and to include recommendations on how to effectively use thoracic EIT in veterinary species. Based on this, the consensus statement aims to address the need for a streamlined approach to veterinary thoracic EIT and includes: an introduction to the use of EIT in veterinary species, the technical background to creation of the functional images, a consensus from all contributing authors on the practical application and use of the technology, descriptions and interpretation of current available variables including appropriate statistical analysis, nomenclature recommended for consistency and future developments in thoracic EIT. The information provided in this consensus statement may benefit researchers and clinicians working within the field of veterinary thoracic EIT. We endeavor to inform future users of the benefits of this imaging modality and provide opportunities to further explore applications of this technology with regards to perfusion imaging and pathology diagnosis.
Background Left‐sided cardiac volume overload (LCVO) can cause fluid accumulation in lung tissue changing the distribution of ventilation, which can be evaluated by electrical impedance tomography (EIT). Objectives To describe and compare EIT variables in horses with naturally occurring compensated and decompensated LCVO and compare them to a healthy cohort. Animals Fourteen adult horses, including university teaching horses and clinical cases (healthy: 8; LCVO: 4 compensated, 2 decompensated). Methods In this prospective cohort study, EIT was used in standing, unsedated horses and analyzed for conventional variables, ventilated right (VAR) and left (VAL) lung area, linear‐plane distribution variables (avg‐max VΔZLine, VΔZLine), global peak flows, inhomogeneity factor, and estimated tidal volume. Horses with decompensated LCVO were assessed before and after administration of furosemide. Variables for healthy and LCVO‐affected horses were compared using a Mann‐Whitney test or unpaired t‐test and observations from compensated and decompensated horses are reported. Results Compared to the healthy horses, the LCVO cohort had significantly less VAL (mean difference 3.02; 95% confidence interval .77‐5.2; P = .02), more VAR (−1.13; −2.18 to −.08; P = .04), smaller avg‐max VΔZLLine (2.54; 1.07‐4.00; P = .003) and VΔZLLine (median difference 5.40; 1.71‐9.09; P = .01). Observation of EIT alterations were reflected by clinical signs in horses with decompensated LCVO and after administration of furosemide. Conclusions and Clinical Importance EIT measurements of ventilation distribution showed less ventilation in the left lung of horses with LCVO and might be useful as an objective assessment of the ventilation effects of cardiogenic pulmonary disease in horses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.